我已经使用 PyTorch 神经网络有一段时间了。我决定要添加一个排列特征重要性评分器,这开始引起一些问题。
我得到“ TypeError:如果没有指定评分,则传递的估计器应该有一个'score'方法。估计器 <class 'skorch.net.NeuralNet'>[uninitialized]( module=<class ' main .run..MultiLayerPredictor' >, ) 没有。 ” - 错误消息。这是我的代码:
class MultiLayerPredictor(torch.nn.Module):
def __init__(self, input_shape=9152, output_shape=1, hidden_dim=1024, **kwargs):
super().__init__()
self.fc1 = torch.nn.Linear(in_features=input_shape, out_features=hidden_dim)
self.fc2 = torch.nn.Linear(in_features=hidden_dim, out_features=hidden_dim)
self.fc3 = torch.nn.Linear(in_features=hidden_dim, out_features=output_shape)
def forward(self, x):
l1 = torch.relu(self.fc1(x))
l2 = torch.relu(self.fc2(l1))
return torch.sigmoid(self.fc3(l2)).reshape(-1)
print("Moving to wrapping the neural net")
net = NeuralNet(
MultiLayerPredictor,
criterion=nn.MSELoss,
max_epochs=10,
optimizer=optim.Adam,
lr=0.1,
iterator_train__shuffle=True
)
print("Moving to finding optimal hyperparameters")
lr = (10**np.random.uniform(-5,-2.5,1000)).tolist()
params = {
'optimizer__lr': lr,
'max_epochs':[300,400,500],
'module__num_units': [14,20,28,36,42],
'module__drop' : [0,.1,.2,.3,.4]
}
gs = RandomizedSearchCV(net,params,refit=True,cv=3,scoring='neg_mean_squared_error',n_iter=100)
gs.fit(X_train_scaled,y_train);
def report(results, n_top=3):
for i in range(1, n_top + 1):
candidates = np.flatnonzero(results['rank_test_score'] == i)
for candidate in candidates:
print("Model with rank: {0}".format(i))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
results['mean_test_score'][candidate],
results['std_test_score'][candidate]))
print("Parameters: {0}".format(results['params'][candidate]))
print("")
print(report(gs.cv_results_,10))
epochs = [i for i in range(len(gs.best_estimator_.history))]
train_loss = gs.best_estimator_.history[:,'train_loss']
valid_loss = gs.best_estimator_.history[:,'valid_loss']
plt.plot(epochs,train_loss,'g-');
plt.plot(epochs,valid_loss,'r-');
plt.title('Training Loss Curves');
plt.xlabel('Epochs');
plt.ylabel('Mean Squared Error');
plt.legend(['Train','Validation']);
plt.show()
r = permutation_importance(net, X_test, y_test, n_repeats=30,random_state=0)
for i in r.importances_mean.argsort()[::-1]:
if r.importances_mean[i] - 2 * r.importances_std[i] > 0:
print(f"{metabolites.feature_names[i]:<8}"
f"{r.importances_mean[i]:.3f}"
f" +/- {r.importances_std[i]:.3f}")
y_pred_acc = gs.predict(X_test)
print('Accuracy : ' + str(accuracy_score(y_test,y_pred_acc)))
Stacktrace 会指出错误源于我设置排列重要性的行。我怎样才能解决这个问题?
完整的堆栈跟踪:
*Traceback (most recent call last):
File "//ad..fi/home/h//Desktop/neuralnet/neuralnet_wrapped.py", line 141, in <module>
run()
File "//ad..fi/home/h//Desktop/neuralnet/neuralnet_wrapped.py", line 119, in run
r = permutation_importance(net, X_test, y_test,
File "C:\Users\\AppData\Roaming\Python\Python38\site-packages\sklearn\utils\validation.py", line 73, in inner_f
return f(**kwargs)
File "C:\Users\\AppData\Roaming\Python\Python38\site-packages\sklearn\inspection\_permutation_importance.py", line 132, in permutation_importance
scorer = check_scoring(estimator, scoring=scoring)
File "C:\Users\\AppData\Roaming\Python\Python38\site-packages\sklearn\utils\validation.py", line 73, in inner_f
return f(**kwargs)
File "C:\Users\\AppData\Roaming\Python\Python38\site-packages\sklearn\metrics\_scorer.py", line 425, in check_scoring
raise TypeError(
TypeError: If no scoring is specified, the estimator passed should have a 'score' method. The estimator <class 'skorch.net.NeuralNet'>[uninitialized](
module=<class '__main__.run.<locals>.MultiLayerPredictor'>,
) does not.*