我正在使用 pROC 包来计算特异性值和“最佳”阈值的 95%CI,我的程序代码如下
data(aSAH)
myroc <- roc(aSAH$outcome, aSAH$s100b)
ci.thresholds(myroc, thresholds = "best")
95% CI (2000 stratified bootstrap replicates):
thresholds sp.low sp.median sp.high se.low se.median se.high
0.205 0.7083 0.8056 0.8889 0.4878 0.6341 0.7805
我通过函数 ci.coords 得到的值是:
ci.coords(myroc, x = "best", ret = c("specificity"))
95% CI (2000 stratified bootstrap replicates):
threshold specificity.low specificity.median specificity.high
best 0.6663 0.8194 0.9865
通过函数 ci.thresholds 的值是:
ci.thresholds(myroc)
95% CI (2000 stratified bootstrap replicates):
thresholds sp.low sp.median sp.high se.low se.median se.high
-Inf 0.00000 0.0000 0.0000 1.0000 1.0000 1.0000
0.065 0.06944 0.1389 0.2222 0.9268 0.9756 1.0000
0.075 0.12500 0.2222 0.3194 0.8049 0.9024 0.9756
0.085 0.19440 0.3056 0.4167 0.7805 0.8780 0.9756
0.095 0.27780 0.3889 0.5000 0.7073 0.8293 0.9268
0.105 0.37500 0.4861 0.5972 0.6579 0.7805 0.9024
0.115 0.43060 0.5417 0.6528 0.6098 0.7561 0.8780
0.135 0.47220 0.5833 0.6944 0.5366 0.6829 0.8293
0.155 0.58330 0.6944 0.7917 0.5122 0.6585 0.8049
0.205 0.70830 0.8056 0.8889 0.4878 0.6341 0.7805
0.245 0.72220 0.8194 0.9028 0.4390 0.5854 0.7317
0.290 0.75000 0.8333 0.9167 0.3659 0.5122 0.6585
0.325 0.76390 0.8472 0.9306 0.3171 0.4634 0.6098
0.345 0.79170 0.8750 0.9444 0.2927 0.4390 0.5854
0.395 0.81910 0.8889 0.9583 0.2683 0.4146 0.5610
0.435 0.83330 0.9028 0.9583 0.2439 0.3902 0.5366
0.475 0.90280 0.9583 1.0000 0.1951 0.3415 0.4878
0.485 0.93060 0.9722 1.0000 0.1707 0.3171 0.4634
0.510 1.00000 1.0000 1.0000 0.1707 0.2927 0.4390
当thresholds为0.205时,specificity的值为0.8056(ci.thresholds(myroc, thresholds = "best")),但是通过ci.coords(myroc, x = "best", ret = c("specificity" )) 为 0.8194,此时阈值为 0.245。为什么不同函数得到的阈值不一样?
然后,通过 ci.coords(myroc, x = "best", ret = c("specificity")) 得到的特异性值为0.8194,95%CI为0.6806-0.9861,但通过ci.thresholds得到的值(myroc) 为 0.8194, 95%CI: 0.7222-0.9028。
更新:
> coords(myroc, x = "best", ret="all", transpose = FALSE)
threshold specificity sensitivity accuracy tn tp fn fp npv ppv fdr fpr tpr tnr
threshold 0.205 0.8055556 0.6341463 0.7433628 58 26 15 14 0.7945205 0.65 0.35 0.1944444 0.6341463 0.8055556
fnr 1-specificity 1-sensitivity 1-accuracy 1-npv 1-ppv precision recall youden
threshold 0.3658537 0.1944444 0.3658537 0.2566372 0.2054795 0.35 0.65 0.6341463 1.439702
closest.topleft
threshold 0.1716575
> ci.coords(myroc, x = "best", ret = "all", transpose = TRUE)
95% CI (2000 stratified bootstrap replicates):
threshold threshold.low threshold.median threshold.high specificity.low specificity.median specificity.high
best best 0.12 0.205 0.51 0.6663 0.8194 1
sensitivity.low sensitivity.median sensitivity.high accuracy.low accuracy.median accuracy.high tn.low tn.median
best 0.3902 0.6341 0.8049 0.6637 0.7522 0.823 47.98 59
tn.high tp.low tp.median tp.high fn.low fn.median fn.high fp.low fp.median fp.high npv.low npv.median npv.high
best 72 16 26 33 8 15 25 0 13 24.02 0.7273 0.7973 0.8732
ppv.low ppv.median ppv.high fdr.low fdr.median fdr.high fpr.low fpr.median fpr.high tpr.low tpr.median tpr.high
best 0.5366 0.6667 1 0 0.3333 0.4634 0 0.1806 0.3337 0.3902 0.6341 0.8049
tnr.low tnr.median tnr.high fnr.low fnr.median fnr.high 1-specificity.low 1-specificity.median 1-specificity.high
best 0.6663 0.8194 1 0.1951 0.3659 0.6098 0 0.1806 0.3337
1-sensitivity.low 1-sensitivity.median 1-sensitivity.high 1-accuracy.low 1-accuracy.median 1-accuracy.high
best 0.1951 0.3659 0.6098 0.177 0.2478 0.3363
1-npv.low 1-npv.median 1-npv.high 1-ppv.low 1-ppv.median 1-ppv.high precision.low precision.median precision.high
best 0.1268 0.2027 0.2727 0 0.3333 0.4634 0.5366 0.6667 1
recall.low recall.median recall.high youden.low youden.median youden.high closest.topleft.low
best 0.3902 0.6341 0.8049 1.279 1.447 1.61 0.08148
closest.topleft.median closest.topleft.high
best 0.1717 0.4021
coords 和 ci.coords 的特异性分别为 0.8055556 和 0.8194,上面还有一些其他不同的结果。