2

我想将所有云设置为 NaN 或 Null 到 Sentinel-2 MSI 2 级的切割部分,仅在可能的情况下用于一个波段(不是所有 RGB)我使用了以下代码:

/**
 * Function to mask clouds using the Sentinel-2 QA band
 * @param {ee.Image} image Sentinel-2 image
 * @return {ee.Image} cloud masked Sentinel-2 image
 */
function maskS2clouds(image) {
  var qa = image.select('QA60');

  // Bits 10 and 11 are clouds and cirrus, respectively.
  var cloudBitMask = 1 << 10;
  var cirrusBitMask = 1 << 11;

  // Both flags should be set to zero, indicating clear conditions.
  var mask = qa.bitwiseAnd(cloudBitMask).eq(0)
      .and(qa.bitwiseAnd(cirrusBitMask).eq(0));

  return image.updateMask(mask).divide(10000);
}

var dataset = ee.ImageCollection('COPERNICUS/S2_SR')
                  .filterDate('2020-01-01', '2020-01-30')
                  // Pre-filter to get less cloudy granules.
                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20))
                  .map(maskS2clouds);

var visualization = {
  min: 0.0,
  max: 0.3,
  bands: ['B4', 'B3', 'B2'],
};

Map.setCenter(83.277, 17.7009, 12);

Map.addLayer(dataset.mean(), visualization, 'RGB');

如图所示,使用的代码并没有完全消除云:

在此处输入图像描述

当我为 Landsat 做同样的事情时,我发现云被代码很好地掩盖了:

/**
 * Function to mask clouds based on the pixel_qa band of Landsat SR data.
 * @param {ee.Image} image Input Landsat SR image
 * @return {ee.Image} Cloudmasked Landsat image
 */
var cloudMaskL457 = function(image) {
  var qa = image.select('pixel_qa');
  // If the cloud bit (5) is set and the cloud confidence (7) is high
  // or the cloud shadow bit is set (3), then it's a bad pixel.
  var cloud = qa.bitwiseAnd(1 << 5)
                  .and(qa.bitwiseAnd(1 << 7))
                  .or(qa.bitwiseAnd(1 << 3));
  // Remove edge pixels that don't occur in all bands
  var mask2 = image.mask().reduce(ee.Reducer.min());
  return image.updateMask(cloud.not()).updateMask(mask2);
};

var dataset = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR')
                  .filterDate('2011-01-01', '2011-12-31')
                  .map(cloudMaskL457);

var visParams = {
  bands: ['B3', 'B2', 'B1'],
  min: 0,
  max: 3000,
  gamma: 1.4,
};
Map.setCenter(34.9774, 32.4916, 8);
Map.addLayer(dataset.median(), visParams);

在此处输入图像描述

在此处输入图像描述

4

0 回答 0