我正在使用这个exams
包,我想用它生成一些包含一些图像的 Moodle 练习。尽管在文件中使用此代码*rmd
:
```{r, echo = FALSE, results = "hide"}
exams::include_supplement("ae1_2_1e2.png")
```
Question
========
Question text:
\centering
$\includegraphics[width=0.55 \textwidth] {ae1_2_1e2.png}$
Answerlist
----------
* answer a
* answer b
* answer c
* answer d
Solution
========
Answerlist
----------
* True
* False
* False
* False
Meta-information
================
exname: ae1_2_1
extype: schoice
exsolution: 1000
exshuffle: 4
这会在 Moodle 中产生以下结果:
另一个问题是,该软件包是否允许在 Moddle 练习(即 schoice)中使用图像作为选项?例子:
```{r, echo = FALSE, results = "hide", out.width = "20%"}
exams::include_supplement(c("ae4_3_2_1e2.png","ae4_3_2_3e4.png"))
```
Question
========
For a right-tailed test (using the Neyman-Pearson criteria), which would be the rejection region for a t-test (independent samples)?
Answerlist
----------
* \ ![](ae4_3_2_1e2.png) $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1+n_2-2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1+n_2-2)};+\infty\bigg[$.
* \ ![](ae4_3_2_1e2.png) $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1-n_2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_3e4.png) $\bigg[t_{1-\alpha;(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_3e4.png) $\bigg[t_{1-\alpha;(n_1+n_2-2)};+\infty\bigg[$.
解决了
You cannot have the same image file in different options. If you want to use the same image, you have to produce a copy of it and use a different name.
So the new code:
```{r, echo = FALSE, results = "hide", out.width = "20%"}
exams::include_supplement(c("ae4_3_2_1.png","ae4_3_2_3.png","ae4_3_2_2.png","ae4_3_2_4.png"))
```
Question
========
For a right-tailed test (using the Neyman-Pearson criteria), which would be the rejection region for a t-test (independent samples)?
Answerlist
----------
* \ ![](ae4_3_2_1.png){width=20%} $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1+n_2-2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1+n_2-2)};+\infty\bigg[$.
* \ ![](ae4_3_2_2.png){width=20%} $\bigg]-\infty;-t_{1-\frac{\alpha}{2};(n_1-n_2)}\bigg] \cup \bigg[t_{1-\frac{\alpha}{2};(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_3.png){width=20%} $\bigg[t_{1-\alpha;(n_1-n_2)};+\infty\bigg[$.
* \ ![](ae4_3_2_4.png){width=20%} $\bigg[t_{1-\alpha;(n_1+n_2-2)};+\infty\bigg[$.
Meta-information
================
exname: RTT
extype: schoice
exsolution: 0001
exshuffle: TRUE
结果(感谢@Achim):