我有两种使用Monte-Carlo 方法计算 pi 的实现:带和不带线程。没有线程的实现工作得很好,但是使用线程的方法在准确性和性能方面存在问题。这是代码:
没有线程:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main()
{
srand(time(NULL));
unsigned long N = 0, Nin = 0;
float x,y;
while(N < 2E+9)
{
x = rand()/((float)RAND_MAX + 1.0)*10.0 - 5.0;
y = rand()/((float)RAND_MAX + 1.0)*10.0 - 5.0;
if(x*x + y*y < 25.0) Nin += 1;
N++;
}
long double pi = 4.0 * (long double)Nin / (long double)N;
printf("\tPi1: %.20Lf\n\t%lu %lu\n", pi, Nin, N);
return 0;
}
并使用线程:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>
typedef struct
{
unsigned long Nin;
unsigned long N;
} nums;
void pi_counter(nums* a)
{
float x,y;
unsigned int N = 0, Nin = 0;
while(N < 1E+9)
{
x = rand()/((float)RAND_MAX + 1.0)*10.0 - 5.0;
y = rand()/((float)RAND_MAX + 1.0)*10.0 - 5.0;
if(x*x + y*y < 25.0) Nin++;
N++;
}
a -> Nin += Nin;
a -> N += N;
}
int main()
{
pthread_t thread1, thread2, thread3;
nums a;
srand(time(NULL));
pthread_create( &thread1, NULL, pi_counter, &a );
pthread_create( &thread2, NULL, pi_counter, &a );
pthread_join( thread1, NULL );
pthread_join( thread2, NULL );
long double pi = 4.0 * (long double)a.Nin / (long double)a.N;
printf("\tPi2: %.20Lf\n\t%lu %lu\n", pi, a.Nin, a.N);
return 0;
}
结果:
$ time ./pi2
Pi2: 3.14147154999999999995
1570735775 2000000000
real 1m1.927s
user 1m23.624s
sys 0m0.139s
$ time ./pi
Pi1: 3.14158868600000000006
1570794343 2000000000
real 0m49.956s
user 0m49.887s
sys 0m0.022s
我的错误在哪里?