我正在尝试绘制层次聚类的树状图,并将其聚类在 2d 散点图中。
为此,我使用以下代码:
def plot_dendrogram(model, **kwargs):
# Create linkage matrix and then plot the dendrogram
# create the counts of samples under each node
counts = np.zeros(model.children_.shape[0])
n_samples = len(model.labels_)
for i, merge in enumerate(model.children_):
current_count = 0
for child_idx in merge:
if child_idx < n_samples:
current_count += 1 # leaf node
else:
current_count += counts[child_idx - n_samples]
counts[i] = current_count
linkage_matrix = np.column_stack([model.children_, model.distances_,
counts]).astype(float)
# Plot the corresponding dendrogram
dendrogram(linkage_matrix, **kwargs)
for linkage in ['ward', 'complete', 'average', 'single']:
cluster = AgglomerativeClustering(linkage=linkage, distance_threshold=0, n_clusters=None)
y_kmeans = cluster.fit(X)
#y_kmeans = cluster.fit_predict(X)
plt.figure(figsize=(5, 5))
plt.scatter(X[:, 0], X[:, 1], c=cluster.fit_predict(X), s=50, cmap='viridis')
#sil[k] = metrics.silhouette_score(X, y_kmeans, metric='sqeuclidean')
plt.figure(figsize=(5, 5))
plot_dendrogram(y_kmeans, truncate_mode='level', p=2)
plt.xlabel("Number of points in node (or index of point if no parenthesis).")
plt.show()
我明白了:
问题是如何绘制 k=2 的正确散点图,如树状图,以便可视化图表中的集群。

