1

我遇到了本主题中描述的同类问题: 使用 fzero: Undefined function or method 'isfinite' for input arguments of 'sym' 类型

他们的回答确实帮助了我,但我仍然陷入困境。

我还必须找到 w 函数的零点,这个函数分几个步骤定义:

所以唯一未知的是w,我定义了其他对象,例如:

lambda= @(w) ((16*rho(i)*A(i)*w^2*Lprime(i)^2)/(E(j)*I(i)))^0.25;

beta=@(w) lambda*b(i)^0.5;

gamma=@(w) lambda*Lprime(i)^0.5;

然后,我定义了一个 4*4 矩阵 M2:

M2=@(w) [besselj(4,beta) bessely(4,beta) besseli(4,beta) besselk(4,beta);
               besselj(3,beta) bessely(3,beta) besseli(3,beta) -besselk(3,beta);
               besselj(2,gamma) bessely(2,gamma) besseli(2,gamma) besselk(2,gamma);
               besselj(4,gamma) bessely(4,gamma) besseli(4,gamma) besselk(4,gamma)];

那么要求解的方程为:det(M2)=0。但是 w=0 是其中一种解决方案,我想要第一个非零解决方案,所以我写道:

delta = @(w) det(M2);

S(i,j)=fzero(delta,500);

然后我运行程序,Matlab 说:

??? Error using ==> fzero at 235
FZERO cannot continue because user supplied function_handle ==> @(w)det(M2)
failed with the error below.

Undefined function or method 'det' for input arguments of type 'function_handle'.

Error in ==> frequencies at 57
    S(i,j)=fzero(delta,500);

我还尝试了 subs 和 eval 方法,但它们也不起作用,错误消息是在这些情况下:

??? Undefined function or method 'isfinite' for input arguments of type 'sym'.

Error in ==> fzero at 323
    elseif ~isfinite(fx) || ~isreal(fx)

Error in ==> frequencies at 58
    S(i,j)=fzero(@(w) subs(delta,'w',w),500);

我猜这与edio的错误相同。和:

??? Error using ==> fzero at 307
FZERO cannot continue because user supplied function_handle ==> @(w)eval(delta)
failed with the error below.

Undefined function or method 'eval' for input arguments of type 'function_handle'.

Error in ==> frequencies at 59
    S(i,j)=fzero(@(w)eval(delta),500);

你能帮我吗?

4

2 回答 2

3

您的问题似乎是当您将匿名函数放在其他匿名函数中时,您永远不会评估它们。例如,您将函数定义lambda为:

lambda = @(w) ((16*rho(i)*A(i)*w^2*Lprime(i)^2)/(E(j)*I(i)))^0.25;

但是当您在 中使用它时beta,您需要使用 的输入值来评估它w,如下所示:

beta = @(w) lambda(w)*b(i)^0.5;
                %# ^--------------Pass w to lambda to evaluate the function

因此,我相信您的其他匿名函数应定义如下:

gamma = @(w) lambda(w)*Lprime(i)^0.5;

M2 = @(w) [besselj(4,beta(w)) bessely(4,beta(w)) besseli(4,beta(w)) ...
           besselk(4,beta(w)); ...
           besselj(3,beta(w)) bessely(3,beta(w)) besseli(3,beta(w)) ...
           -besselk(3,beta(w)); ...
           besselj(2,gamma(w)) bessely(2,gamma(w)) besseli(2,gamma(w)) ...
           besselk(2,gamma(w)); ...
           besselj(4,gamma(w)) bessely(4,gamma(w)) besseli(4,gamma(w)) ...
           besselk(4,gamma(w))];

delta = @(w) det(M2(w));


关于效率的说明...

我在这里注意到一个明显的效率问题。通过使用匿名函数而不是任何其他类型的函数(主函数嵌套函数子函数),您最终将使用相同的输入多次评估相同的函数。

例如,每次您评估以创建矩阵时,M2您都将使用相同的输入评估 8 次!请注意,您可以通过放入一个函数并作为输入传递以及两个函数句柄和来进行改进:betagammaM2wbetagamma

function newMatrix = M2(w,betaFcn,gammaFcn)

  bw = betaFcn(w);   %# Evaluate the beta function once
  gw = gammaFcn(w);  %# Evaluate the gamma function once
  newMatrix = [besselj(4,bw) bessely(4,bw) besseli(4,bw) besselk(4,bw); ...
               besselj(3,bw) bessely(3,bw) besseli(3,bw) -besselk(3,bw); ...
               besselj(2,gw) bessely(2,gw) besseli(2,gw) besselk(2,gw); ...
               besselj(4,gw) bessely(4,gw) besseli(4,gw) besselk(4,gw)];

end

您的新delta功能将如下所示:

delta = @(w) det(M2(w,beta,gamma));
于 2011-05-26T18:34:16.543 回答
0

您好,非常感谢您的帮助。它有效,但最后一行显然必须改变(我仍然花了 10 分钟才弄清楚):

lambda= @(w) ((16*rho(i)*A(i)*w^2*Lprime(i)^2)/(E(j)*I(i)))^0.25;
beta=@(w) lambda(w)*b(i)^0.5;
gamma=@(w) lambda(w)*Lprime(i)^0.5;


M2=@(w) [besselj(4,beta(w)) bessely(4,beta(w)) besseli(4,beta(w)) besselk(4,beta(w));
    besselj(3,beta(w)) bessely(3,beta(w)) besseli(3,beta(w)) -besselk(3,beta(w));
    besselj(2,gamma(w)) bessely(2,gamma(w)) besseli(2,gamma(w)) besselk(2,gamma(w));
    besselj(4,gamma(w)) bessely(4,gamma(w)) besseli(4,gamma(w)) besselk(4,gamma(w))]; 

delta = @(w) det(M2(w));
    S(i,j)=fzero(@(w) delta(w),500);

现在它真的比以前快了,在另一种情况下,函数solve可以处理分辨率,每个循环大约需要10秒,现在是0.06秒

我将尝试您的其他解决方案以查看改进。

十分感谢。

于 2011-05-27T04:11:44.407 回答