1

我的数据如下所示,DFD 是我的数据框。

DFD
  Names  BP  jobcode bp_Category
1     A 100   Doctor      low_BP
2     B 150   Doctor   Medium_BP
3     C 200 Engineer     High_BP
4     D 110 Engineer      low_BP
5     E 160  Student   Medium_BP

以下是我如何获得每个工作代码遭受低、高和中 BP 的百分比,如下所示。

tabLE<-table(DFD$bp_Category,DFD$jobcode)
> prop.table(tabLE,2)*100

            Doctor Engineer Student
  low_BP        50       50       0
  Medium_BP     50        0     100
  High_BP        0       50       0

我想问一下我如何以及通过哪个统计测试可以分别看到所有三个 bp_categories 的三个工作代码之间的显着差异。例如,我想看看工程师在医生和学生中的 Medium_BP 百分比是否显着最高?

Data 

Names<-c("A","B","C","D","E")
BP<-c(100,150,200,110,160)
jobcode<-c("Doctor","Doctor","Engineer","Engineer","Student")
jobcode<-ordered(jobcode)
DFD<-data.frame(Names,BP,jobcode)
DFD$bp_Category[DFD$BP<140]<-"low_BP"
DFD$bp_Category[DFD$BP<170 & DFD$BP>140]<-"Medium_BP"
DFD$bp_Category[DFD$BP<201 & DFD$BP>170]<-"High_BP"
DFD$bp_Category<-ordered(DFD$bp_Category, levels = c("low_BP","Medium_BP","High_BP"))
tabDFD <- with(DFD, table(DFD$bp_Category,DFD$jobcode))
tabLE<-table(DFD$bp_Category,DFD$jobcode)
prop.table(tabLE,2)*100
4

1 回答 1

1

使用模拟数据集,其中 BP 和职业之间的比例或多或少相等:

set.seed(111)
DFD = data.frame(jobcode = sample(c("Doctor","Engineer","Student"),10000,replace=TRUE),
bp_Category = sample(c("low_BP","Medium_BP","High_BP"),10000,replace=TRUE)
)

由于这是在 null 下模拟的,因此您看到它大约为 33%:

tabDFD <- with(DFD, table(DFD$bp_Category,DFD$jobcode))
tabLE<-table(DFD$bp_Category,DFD$jobcode)
prop.table(tabLE,2)*100

              Doctor Engineer  Student
  High_BP   32.81156 33.89058 32.96930
  low_BP    33.68453 32.73556 33.82527
  Medium_BP 33.50391 33.37386 33.20543

我们可以对每一行进行卡方检验,但我们需要知道 Doctor、Engineer、Student 的预期比例,所以我们得到:

probs = colSums(tabLE)/sum(tabLE)

然后对于每一行,我们测试每个单元格与我们预期的偏差有多少:

library(broom)
library(purrr)

results = split(as.matrix(tabLE),rownames(tabLE)) %>% 
map_dfr(~tidy(chisq.test(.x,p=probs)),.id="BP") 

 results
# A tibble: 3 x 5
  BP        statistic p.value parameter method                                  
  <chr>         <dbl>   <dbl>     <dbl> <chr>                                   
1 High_BP      0.676    0.713         2 Chi-squared test for given probabilities
2 low_BP       0.697    0.706         2 Chi-squared test for given probabilities
3 Medium_BP    0.0451   0.978         2 Chi-squared test for given probabilities
于 2020-04-19T17:11:24.317 回答