3

我正在尝试使用二项式 logit 链接函数混合模型的

我的问题是我最初使用缩放的连续变量运行模型,然后在ggpredict()函数中使用它。

但是,当我尝试绘制边际效应时,边际效应的 x 轴使用缩放变量,我想用原始连续未缩放数据绘制它。从而使其更具可解释性。

我不确定如何做到这一点。我附上了一个最小可重复的例子。

    #data
    dat <- data.frame(age = seq(1,5, by = 1),
                      sex = as.factor(c("M", "F")),
                      cluster = runif(20, min=0, max=100),
                      household = runif(50, min=0, max=100),
                      temp = runif(100, min=0, max=100),
                      prec = runif(100, min=0, max=100),
                      hum = runif(100, min=0, max=100),
                      disease = c(1,0))

    #scale continuous variables
    pvars <- c("temp", "prec", "hum")
    datsc <- dat
    datsc[pvars] <- lapply(datsc[pvars],scale)

    #setting the control to run faster

    contr1 <- glmerControl(optimizer = "nloptwrap", calc.derivs = FALSE)

    #run glmer model


    model1 <- glmer(disease ~  hum + temp + prec +  (1|cluster/household), 
                               family = binomial("logit"), 
                               data = datsc, control = contr1) 

    modelsummary<- summary(model1)

    #calculate marginal effects

    humidity <- data.frame(ggpredict(model1, term = "hum [all]", type = "fe"))

    humidity_plot <- ggplot(data=humidity, aes(x=x, y=predicted)) + 
      geom_line(size = 1) +
      geom_ribbon(aes(ymin=conf.low, ymax=conf.high, fill = group), linetype=2, alpha=0.1) +
      scale_y_continuous(limits = c(0, 1), breaks = c(seq(0,1, by = 0.2))) + 
      xlab("Humidity") + 
      ylab("Probability of Disease") + theme_classic()

任何帮助将非常感激。

4

0 回答 0