0

WPD = 小波包分解

你好,亲爱的堆栈溢出。我对我的时间序列数据有疑问。我的数据是机器或机床中轴承的振动。

我们知道WPD作为一个滤波器工作,分为8个频段:

(ex - sampling rate = 4000Hz
1. 0 ~ 500Hz
2. 500 ~ 1000Hz
3. 1000 ~ 1500Hz
4. 1500 ~ 2000Hz
5. 2000 ~ 2500Hz
6. 2500 ~ 3000Hz
7. 3000 ~ 3500Hz
8. 3500 ~ 4000Hz );

但是,如果将重构应用于这 8 个频带,则只能应用 0~2000Hz 的 Nyquist 定理(根据 Nyquist 定理,只有不到一半的频率是有效的)。

由于2000Hz以上的频率变得毫无意义,那么我们只使用1、2、3、4频段进行重构。那正确吗?

我有两个问题是:

首先,在应用 WPD 后进行重建时,是否可以仅使用 0 ~ 2000Hz,这是采样频率的一半

当我在 WPD 之后重建过程时,

应用WPD后使用FFT合理吗??

4

1 回答 1

0

1.我认为WPD返回的频段存在混淆。如果您的振动时间序列以 4,000Hz 采样,奈奎斯特定理告诉您信号中包含的最高频率是 2,000Hz,因此您的最高频率子带应该从 1,750Hz 到 2,000Hz,而不是从 3,500 到 2,000Hz

请查看此 Mathworks 页面,以更好地了解使用 WPD 时如何划分子带。

2.是的,您可以对重构的数据应用 FFT。我想如果您打算对时间序列进行低通滤波,您计划绘制原始数据和重建数据的光谱;这就是你要计算 FFT 的原因吗?

最后但并非最不重要的一点是,如果您的目标只是对数据进行低通过滤,您可能需要考虑比 WPD 更简单的其他工具。正如前面提到的 Mathworks 页面中所解释的,WPD 允许比传统 DWT 更好的分离,但根据您尝试过滤掉的频率,它可能是矫枉过正的。

于 2020-03-17T12:14:25.267 回答