我正在尝试使用 Eigen在高斯过程(从这里)上重现一些 numpy 代码。基本上,我需要从多元正态分布中抽样:
samples = np.random.multivariate_normal(mu.ravel(), cov, 1)
均值向量当前为零,而协方差矩阵是通过各向同性平方指数核生成的方阵:
sqdist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T)
return sigma_f**2 * np.exp(-0.5 / l**2 * sqdist)
我现在可以很好地生成协方差矩阵(它可能可以被清理,但现在它是一个 POC):
Matrix2D kernel(const Matrix2D & x1, const Matrix2D & x2, double l = 1.0, double sigma = 1.0) {
auto dists = ((- 2.0 * (x1 * x2.transpose())).colwise()
+ x1.rowwise().squaredNorm()).rowwise() +
+ x2.rowwise().squaredNorm().transpose();
return std::pow(sigma, 2) * ((-0.5 / std::pow(l, 2)) * dists).array().exp();
}
但是,当我需要对多元正态进行采样时,我的问题就开始了。
我试过使用这个接受的答案中提出的解决方案;但是,分解仅适用于最大为 30x30 的协方差矩阵;不仅如此,LLT 无法分解矩阵。答案中提供的替代版本也不起作用,并创建 NaN。我也尝试了 LDLT,但它也中断了(D 包含负值,所以 sqrt 给出 NaN)。
然后,我很好奇,我研究了 numpy 是如何做到这一点的。原来 numpy 实现使用SVD 分解(使用 LAPACK),而不是 Cholesky。所以我尝试复制他们的实现:
// SVD on the covariance matrix generated via kernel function
Eigen::BDCSVD<Matrix2D> solver(covs, Eigen::ComputeFullV);
normTransform = (-solver.matrixV().transpose()).array().colwise() * solver.singularValues().array().sqrt();
// Generate gaussian samples, "randN" is from the multivariate StackOverflow answer
Matrix2D gaussianSamples = Eigen::MatrixXd::NullaryExpr(1, means.size(), randN);
Eigen::MatrixXd samples = (gaussianSamples * normTransform).rowwise() + means.transpose();
各种缺点是我试图准确地重现 numpy 的结果。
无论如何,这工作得很好,即使是大尺寸。我想知道为什么 Eigen 不能做 LLT,但 SVD 有效。我使用的协方差矩阵是相同的。我可以做些什么来简单地使用 LLT 吗?
编辑:这是我的完整示例:
#include <iostream>
#include <random>
#include <Eigen/Cholesky>
#include <Eigen/SVD>
#include <Eigen/Eigenvalues>
using Matrix2D = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor | Eigen::AutoAlign>;
using Vector = Eigen::Matrix<double, Eigen::Dynamic, 1>;
/*
We need a functor that can pretend it's const,
but to be a good random number generator
it needs mutable state.
*/
namespace Eigen {
namespace internal {
template<typename Scalar>
struct scalar_normal_dist_op
{
static std::mt19937 rng; // The uniform pseudo-random algorithm
mutable std::normal_distribution<Scalar> norm; // The gaussian combinator
EIGEN_EMPTY_STRUCT_CTOR(scalar_normal_dist_op)
template<typename Index>
inline const Scalar operator() (Index, Index = 0) const { return norm(rng); }
};
template<typename Scalar> std::mt19937 scalar_normal_dist_op<Scalar>::rng;
template<typename Scalar>
struct functor_traits<scalar_normal_dist_op<Scalar> >
{ enum { Cost = 50 * NumTraits<Scalar>::MulCost, PacketAccess = false, IsRepeatable = false }; };
} // end namespace internal
} // end namespace Eigen
Matrix2D kernel(const Matrix2D & x1, const Matrix2D & x2, double l = 1.0, double sigma = 1.0) {
auto dists = ((- 2.0 * (x1 * x2.transpose())).colwise() + x1.rowwise().squaredNorm()).rowwise() + x2.rowwise().squaredNorm().transpose();
return std::pow(sigma, 2) * ((-0.5 / std::pow(l, 2)) * dists).array().exp();
}
int main() {
unsigned size = 50;
unsigned seed = 1;
Matrix2D X = Vector::LinSpaced(size, -5.0, 4.8);
Eigen::internal::scalar_normal_dist_op<double> randN; // Gaussian functor
Eigen::internal::scalar_normal_dist_op<double>::rng.seed(seed); // Seed the rng
Vector means = Vector::Zero(X.rows());
auto covs = kernel(X, X);
Eigen::LLT<Matrix2D> cholSolver(covs);
// We can only use the cholesky decomposition if
// the covariance matrix is symmetric, pos-definite.
// But a covariance matrix might be pos-semi-definite.
// In that case, we'll go to an EigenSolver
Eigen::MatrixXd normTransform;
if (cholSolver.info()==Eigen::Success) {
std::cout << "Used LLT\n";
// Use cholesky solver
normTransform = cholSolver.matrixL();
} else {
std::cout << "Broken\n";
Eigen::BDCSVD<Matrix2D> solver(covs, Eigen::ComputeFullV);
normTransform = (-solver.matrixV().transpose()).array().colwise() * solver.singularValues().array().sqrt();
}
Matrix2D gaussianSamples = Eigen::MatrixXd::NullaryExpr(1, means.size(), randN);
Eigen::MatrixXd samples = (gaussianSamples * normTransform).rowwise() + means.transpose();
return 0;
}