我已经设置了 Databricks Connect,以便我可以在本地开发并获得 Intellij 好东西,同时利用 Azure Databricks 上大型 Spark 集群的强大功能。
当我想读取或写入 Azure Data Lake 时
spark.read.csv("abfss://blah.csv)
,我得到以下信息
xception in thread "main" java.io.IOException: No FileSystem for scheme: abfss
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2586)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2593)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:91)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2632)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2614)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:370)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:296)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:547)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:545)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:355)
at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary(DataSource.scala:545)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:359)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:618)
at org.apache.spark.sql.DataFrameReader.csv(DataFrameReader.scala:467)
由此我的印象是,由于代码是远程执行的,因此在本地引用 Azure Data Lake 不会有问题。显然我错了。
有没有人可以解决这个问题?