1

我想将生成时间序列数据的 ODE 和嵌入在 ODE 中的神经网络解耦,该 ODE 试图学习这些数据的结构。换句话说,我想复制https://julialang.org/blog/2019/01/fluxdiffeq/中提供的时间序列外推示例,但具有不同的底层函数,即我使用 Lotka-Voltera 生成数据。

我在 Julia 中的工作流程如下(请注意,我对 Julia 很陌生,但我希望它很清楚。):

train_size = 32
tspan_train = (0.0f0,4.00f0)

u0 = [1.0,1.0]
p = [1.5,1.0,3.0,1.0]

function lotka_volterra(du,u,p,t)
  x, y = u
  α, β, δ, γ = p
  du[1] = dx = α*x - β*x*y
  du[2] = dy = -δ*y + γ*x*y
end

t_train = range(tspan_train[1],tspan_train[2],length = train_size)

prob = ODEProblem(lotka_volterra, u0, tspan_train,p)
ode_data_train = Array(solve(prob, Tsit5(),saveat=t_train))

function create_neural_ode(solver, tspan, t_saveat)
    dudt = Chain(
            Dense(2,50,tanh),
            Dense(50,2))
    ps = Flux.params(dudt)   
    n_ode = NeuralODE(dudt, tspan, solver, saveat = t_saveat, reltol=1e-7, abstol=1e-9)           
    n_ode
end

function predict_n_ode(ps)
    n_ode(u0,ps)
end
function loss_n_ode(ps)
    pred = predict_n_ode(ps)
    loss = sum(abs2, ode_data_train .- pred)
    loss,pred
end

n_ode = create_neural_ode(Tsit5(), tspan_train, t_train)

final_p = Any[]
losses = []
cb = function(p,loss,pred)
            display(loss)
            display(p)
            push!(final_p, copy(p))
            push!(losses,loss)
            pl = scatter(t_train, ode_data_train[1,:],label="data")
            scatter!(pl,t_train,pred[1,:],label="prediction")
            display(plot(pl))
        end

sol = DiffEqFlux.sciml_train!(loss_n_ode, n_ode.p, ADAM(0.05), cb = cb, maxiters = 100)

# Plot and save training results 
x = 1:100
plot_to_save = plot(x,losses,title=solver_name,label="loss")
plot(x,losses,title=solver_name, label="loss")
xlabel!("Epochs")

但是我可以观察到我的 NN 并没有学到太多东西,它停滞不前,并且使用 Euler 和 Tsit5 时的损失保持在 155 左右,而使用 RK4 时表现更好(损失 142)。

如果有人指出我在执行过程中是否出错或者这种行为是预期的,我将非常感激。

4

1 回答 1

0

将数量maxiters =增加到 300 有助于实现更好的拟合,但训练极不稳定。

于 2020-02-20T08:39:39.167 回答