2

我正在寻找一个优化的解决方案来使用 pytorch 数据加载器加载多个巨大的 .npy 文件。我目前正在使用以下方法,它为每个时期的每个文件创建一个新的数据加载器。

我的数据加载器是这样的:

class GetData(torch.utils.data.Dataset):

    def __init__(self, data_path, target_path, transform=None):
        with open(data_path, 'rb') as train_pkl_file:
            data = pickle.load(train_pkl_file)
            self.data = torch.from_numpy(data).float()
        with open(target_path, 'rb') as target_pkl_file:
            targets = pickle.load(target_pkl_file)
            self.targets = torch.from_numpy(targets).float()

    def __getitem__(self, index):
        x = self.data[index]
        y = self.targets[index]
        return index, x, y

    def __len__(self):
        num_images = self.data.shape[0]
        return num_images

我有一个 npy 文件列表:

list1 = ['d1.npy', 'd2.npy','d3.npy']
list1 = ['s1.npy', 's2.npy','s3.npy']

我创建了一个数据加载器,它给出了文件名

class MyDataset(torch.utils.data.Dataset):
    def __init__(self,flist):
        self.npy_list1 = flist1
        self.npy_list2 = flist2

    def __getitem__(self, idx):
        filename1 = self.npy_list1[idx]
        filename2 = self.npy_list2[idx]
        return filename1,filename2

    def __len__(self):
        return len(self.npy_list1)

我遍历它们如下:

for epoch in range(500):
    print('Epoch #%s' % epoch)
    model.train()
    loss_, elbo_, recon_ = [[] for _ in range(3)]
    running_loss = 0

    # FOR EVERY SMALL FILE
    print("Training: ")

    # TRAIN HERE
    my_dataset = MyDataset(npyList)
    for idx, (dynamic_file, static_file) in tqdm(enumerate(my_dataset)): 
         ...Do stuff ....

上述方法有效,但我正在寻找内存效率更高的解决方案。注意:我有大量数据 > 200 GB,因此将 numpy 数组连接到 1 个文件可能不是解决方案(由于 RAM 限制)。提前致谢

4

1 回答 1

4

根据numpy.load,您可以将参数设置mmap_mode='r'为接收内存映射数组numpy.memmap

内存映射数组保存在磁盘上。但是,它可以像任何 ndarray 一样被访问和切片。内存映射对于访问大文件的小片段而不将整个文件读入内存特别有用。

我尝试实现一个使用内存映射的数据集。首先,我生成了一些数据如下:

import numpy as np

feature_size = 16
total_count = 0
for index in range(10):
    count = 1000 * (index + 1)
    D = np.random.rand(count, feature_size).astype(np.float32)
    S = np.random.rand(count, 1).astype(np.float32)
    np.save(f'data/d{index}.npy', D)
    np.save(f'data/s{index}.npy', S)
    total_count += count

print("Dataset size:", total_count)
print("Total bytes:", total_count * (feature_size + 1) * 4, "bytes")

输出是:

Dataset size: 55000
Total bytes: 3740000 bytes

然后,我对数据集的实现如下:

import numpy as np
import torch
from bisect import bisect
import os, psutil # used to monitor memory usage

class BigDataset(torch.utils.data.Dataset):
    def __init__(self, data_paths, target_paths):
        self.data_memmaps = [np.load(path, mmap_mode='r') for path in data_paths]
        self.target_memmaps = [np.load(path, mmap_mode='r') for path in target_paths]
        self.start_indices = [0] * len(data_paths)
        self.data_count = 0
        for index, memmap in enumerate(self.data_memmaps):
            self.start_indices[index] = self.data_count
            self.data_count += memmap.shape[0]

    def __len__(self):
        return self.data_count

    def __getitem__(self, index):
        memmap_index = bisect(self.start_indices, index) - 1
        index_in_memmap = index - self.start_indices[memmap_index]
        data = self.data_memmaps[memmap_index][index_in_memmap]
        target = self.target_memmaps[memmap_index][index_in_memmap]
        return index, torch.from_numpy(data), torch.from_numpy(target)

# Test Code
if __name__ == "__main__":
    data_paths = [f'data/d{index}.npy' for index in range(10)]
    target_paths = [f'data/s{index}.npy' for index in range(10)]

    process = psutil.Process(os.getpid())
    memory_before = process.memory_info().rss

    dataset = BigDataset(data_paths, target_paths)

    used_memory = process.memory_info().rss - memory_before
    print("Used memory:", used_memory, "bytes")

    dataset_size = len(dataset)
    print("Dataset size:", dataset_size)
    print("Samples:")
    for sample_index in [0, dataset_size//2, dataset_size-1]:
        print(dataset[sample_index])

输出如下:

Used memory: 299008 bytes
Dataset size: 55000
Samples:
(0, tensor([0.5240, 0.2931, 0.9039, 0.9467, 0.8710, 0.2147, 0.4928, 0.8309, 0.7344, 0.2861, 0.1557, 0.7009, 0.1624, 0.8608, 0.5378, 0.4304]), tensor([0.7725]))
(27500, tensor([0.8109, 0.3794, 0.6377, 0.4825, 0.2959, 0.6325, 0.7278, 0.6856, 0.1037, 0.3443, 0.2469, 0.4317, 0.6690, 0.4543, 0.7007, 0.5733]), tensor([0.7856]))
(54999, tensor([0.4013, 0.9990, 0.9107, 0.9897, 0.0204, 0.2776, 0.5529, 0.5752, 0.2266, 0.9352, 0.2130, 0.9542, 0.4116, 0.4959, 0.1436, 0.9840]), tensor([0.6342]))

根据结果​​,内存使用量仅占总大小的 10%。我没有尝试使用非常大的文件大小的代码,所以我不知道使用 > 200 GB 的文件会有多高的效率。如果您可以尝试并告诉我使用和不使用 memmaps 的内存使用情况,我将不胜感激。

于 2020-02-08T20:29:00.153 回答