如果我正确理解了您的问题,您想弄清楚您的不同样本与平均值的接近程度。通过比较样本,您可以找到包含迷失方向圆柱体的异常值。这非常符合 的定义L2 norm
,所以MSE
应该在这里工作。
我将计算所有样本的平均 3D 图像,然后计算每个样本与该平均值的距离。然后我会比较这些值。
将样本与人工噪声图像进行比较的想法还不错,但我不确定正态分布和您的归一化是否按您的计划进行。我可以是苹果和橘子。而且我认为沿不同轴查看投影不是一个好主意,只需比较 3D 图像即可。
我用 2D 圆圈做了一些小测试,参数alpha
表明图片中有多少噪音和多少圆圈。(alpha=0
仅表示噪音,alpha=1
仅表示圆圈`)
import numpy as np
import matplotlib.pyplot as plt
grid_size = 20
radius = 5
mag = 1
def get_circle_stencil(radius):
xx, yy = np.meshgrid(np.linspace(-grid_size/2+1/2, grid_size/2-1/2, grid_size),
np.linspace(-grid_size/2+1/2, grid_size/2-1/2, grid_size))
dist = np.sqrt(xx**2 + yy**2)
inner = dist < (radius - 1/2)
return inner.astype(float)
def create_noise(mag, n_dim=2):
# return np.random.normal(0, mag, size=(grid_size,)*n_dim)
return np.random.uniform(0, mag, size=(grid_size,)*n_dim)
def create_noisy_sample(alpha, n_dim=2):
return (np.random.uniform(0, 1-alpha, size=(grid_size,)*n_dim) +
alpha*get_circle_stencil(radius))
fig = plt.figure()
ax = fig.subplots(nrows=3, ncols=3)
np.unravel_index(3, shape=(3, 3))
alpha_list = np.arange(9) / 10
for i, alpha in enumerate(alpha_list):
r, c = np.unravel_index(i, shape=(3, 3))
ax[r][c].imshow(*norm(create_noisy_sample(alpha=alpha)), cmap='Greys')
ax[r][c].set_title(f"alpha={alpha}")
ax[r][c].xaxis.set_ticklabels([])
ax[r][c].yaxis.set_ticklabels([])

然后我尝试了一些指标 ( mse
,cosine similarity
并binary cross entropy
查看了它们在不同 alpha 值下的表现。
def normalize(*args):
return [a / np.linalg.norm(a) for a in args]
def cosim(a, b):
return np.sum(a * b)
def mse(a, b):
return np.sqrt(np.sum((a-b)**2))
def bce(a, b):
# binary cross entropy implemented from tensorflow / keras
eps = 1e-7
res = a * np.log(b + eps)
res += (1 - a) * np.log(1 - b + eps)
return np.mean(-res)
我比较NoiseA-NoiseB
了,,,,, Circle-Circle
_Circle-Noise
Noise-Sample
Circle-Sample
alpha = 0.1
noise = create_noise(mag=1, grid_size=grid_size)
noise_b = create_noise(mag=1, grid_size=grid_size)
circle_reference = get_circle_stencil(radius=radius, grid_size=grid_size)
sample = create_noise(mag=1, grid_size=grid_size) + alpha * circle_reference
print('NoiseA-NoiseB:', mse(*norm(noise, noise_b))) # 0.718
print('Circle-Circle:', mse(*norm(circle, circle))) # 0.000
print('Circle-Noise:', mse(*norm(circle, noise))) # 1.168
print('Noise-Sample:', mse(*norm(noise, sample))) # 0.697
print('Circle-Sample:', mse(*norm(circle, sample))) # 1.100
print('NoiseA-NoiseB:', cosim(*norm(noise, noise_b))) # 0.741
print('Circle-Circle:', cosim(*norm(circle, circle))) # 1.000
print('Circle-Noise:', cosim(*norm(circle, noise))) # 0.317
print('Noise-Sample:', cosim(*norm(noise, sample))) # 0.757
print('Circle-Sample:', cosim(*norm(circle, sample))) # 0.393
print('NoiseA-NoiseB:', bce(*norm(noise, noise_b))) # 0.194
print('Circle-Circle:', bce(*norm(circle, circle))) # 0.057
print('Circle-Noise:', bce(*norm(circle, noise))) # 0.111
print('Noise-Circle:', bce(*norm(noise, circle))) # 0.636
print('Noise-Sample:', bce(*norm(noise, sample))) # 0.192
print('Circle-Sample:', bce(*norm(circle, sample))) # 0.104
n = 1000
ns = np.zeros(n)
cs = np.zeros(n)
for i, alpha in enumerate(np.linspace(0, 1, n)):
sample = create_noisy_sample(alpha=alpha)
ns[i] = mse(*norm(noise, sample))
cs[i] = mse(*norm(circle, sample))
fig, ax = plt.subplots()
ax.plot(np.linspace(0, 1, n), ns, c='b', label='noise-sample')
ax.plot(np.linspace(0, 1, n), cs, c='r', label='circle-sample')
ax.set_xlabel('alpha')
ax.set_ylabel('mse')
ax.legend()

对于您的问题,我只想看看比较circle-sample
(红色)。不同的样本会表现得好像它们具有不同的 alpha 值,您可以对它们进行相应的分组。而且您应该能够检测到异常值,因为它们应该具有更高的mse
.
您说您必须结合 100-1000 张图片才能看到圆柱体,这表明您的问题中的 alpha 值非常小,但平均而言 mse
应该可以。