事实证明,OpenMRN 实现了您正在寻找的解决方案:https ://github.com/bakerstu/openmrn/blob/master/src/freertos_drivers/common/cpu_profile.hxx
更多信息可以在这里找到:Stack Backtrace for ARM core using GCC compiler(当有 MSP 到 PSP 切换时)。引用这篇文章:
这是可行的,但需要访问 libgcc 如何实现 _Unwind_Backtrace 函数的内部细节。幸运的是,代码是开源的,但依赖于这些内部细节是脆弱的,因为它可能会在将来的 armgcc 版本中中断,而不会发出任何通知。
通常,读取执行回溯的 libgcc 的源代码,它会创建 CPU 内核寄存器的内存虚拟表示,然后使用此表示向上遍历堆栈,模拟异常抛出。_Unwind_Backtrace 所做的第一件事是从当前 CPU 寄存器中填充此上下文,然后调用内部实现函数。
在大多数情况下,从堆栈异常结构手动创建该上下文足以伪造从处理程序模式向上通过调用堆栈的回溯。这是一些示例代码(来自https://github.com/bakerstu/openmrn/blob/62683863e8621cef35e94c9dcfe5abcaf996d7a2/src/freertos_drivers/common/cpu_profile.hxx#L162):
/// This struct definition mimics the internal structures of libgcc in
/// arm-none-eabi binary. It's not portable and might break in the future.
struct core_regs
{
unsigned r[16];
};
/// This struct definition mimics the internal structures of libgcc in
/// arm-none-eabi binary. It's not portable and might break in the future.
typedef struct
{
unsigned demand_save_flags;
struct core_regs core;
} phase2_vrs;
/// We store what we know about the external context at interrupt entry in this
/// structure.
phase2_vrs main_context;
/// Saved value of the lr register at the exception entry.
unsigned saved_lr;
/// Takes registers from the core state and the saved exception context and
/// fills in the structure necessary for the LIBGCC unwinder.
void fill_phase2_vrs(volatile unsigned *fault_args)
{
main_context.demand_save_flags = 0;
main_context.core.r[0] = fault_args[0];
main_context.core.r[1] = fault_args[1];
main_context.core.r[2] = fault_args[2];
main_context.core.r[3] = fault_args[3];
main_context.core.r[12] = fault_args[4];
// We add +2 here because first thing libgcc does with the lr value is
// subtract two, presuming that lr points to after a branch
// instruction. However, exception entry's saved PC can point to the first
// instruction of a function and we don't want to have the backtrace end up
// showing the previous function.
main_context.core.r[14] = fault_args[6] + 2;
main_context.core.r[15] = fault_args[6];
saved_lr = fault_args[5];
main_context.core.r[13] = (unsigned)(fault_args + 8); // stack pointer
}
extern "C"
{
_Unwind_Reason_Code __gnu_Unwind_Backtrace(
_Unwind_Trace_Fn trace, void *trace_argument, phase2_vrs *entry_vrs);
}
/// Static variable for trace_func.
void *last_ip;
/// Callback from the unwind backtrace function.
_Unwind_Reason_Code trace_func(struct _Unwind_Context *context, void *arg)
{
void *ip;
ip = (void *)_Unwind_GetIP(context);
if (strace_len == 0)
{
// stacktrace[strace_len++] = ip;
// By taking the beginning of the function for the immediate interrupt
// we will attempt to coalesce more traces.
// ip = (void *)_Unwind_GetRegionStart(context);
}
else if (last_ip == ip)
{
if (strace_len == 1 && saved_lr != _Unwind_GetGR(context, 14))
{
_Unwind_SetGR(context, 14, saved_lr);
allocator.singleLenHack++;
return _URC_NO_REASON;
}
return _URC_END_OF_STACK;
}
if (strace_len >= MAX_STRACE - 1)
{
++allocator.limitReached;
return _URC_END_OF_STACK;
}
// stacktrace[strace_len++] = ip;
last_ip = ip;
ip = (void *)_Unwind_GetRegionStart(context);
stacktrace[strace_len++] = ip;
return _URC_NO_REASON;
}
/// Called from the interrupt handler to take a CPU trace for the current
/// exception.
void take_cpu_trace()
{
memset(stacktrace, 0, sizeof(stacktrace));
strace_len = 0;
last_ip = nullptr;
phase2_vrs first_context = main_context;
__gnu_Unwind_Backtrace(&trace_func, 0, &first_context);
// This is a workaround for the case when the function in which we had the
// exception trigger does not have a stack saved LR. In this case the
// backtrace will fail after the first step. We manually append the second
// step to have at least some idea of what's going on.
if (strace_len == 1)
{
main_context.core.r[14] = saved_lr;
main_context.core.r[15] = saved_lr;
__gnu_Unwind_Backtrace(&trace_func, 0, &main_context);
}
unsigned h = hash_trace(strace_len, (unsigned *)stacktrace);
struct trace *t = find_current_trace(h);
if (!t)
{
t = add_new_trace(h);
}
if (t)
{
t->total_size += 1;
}
}
/// Change this value to runtime disable and enable the CPU profile gathering
/// code.
bool enable_profiling = 0;
/// Helper function to declare the CPU usage tick interrupt.
/// @param irq_handler_name is the name of the interrupt to declare, for example
/// timer4a_interrupt_handler.
/// @param CLEAR_IRQ_FLAG is a c++ statement or statements in { ... } that will
/// be executed before returning from the interrupt to clear the timer IRQ flag.
#define DEFINE_CPU_PROFILE_INTERRUPT_HANDLER(irq_handler_name, CLEAR_IRQ_FLAG) \
extern "C" \
{ \
void __attribute__((__noinline__)) load_monitor_interrupt_handler( \
volatile unsigned *exception_args, unsigned exception_return_code) \
{ \
if (enable_profiling) \
{ \
fill_phase2_vrs(exception_args); \
take_cpu_trace(); \
} \
cpuload_tick(exception_return_code & 4 ? 0 : 255); \
CLEAR_IRQ_FLAG; \
} \
void __attribute__((__naked__)) irq_handler_name(void) \
{ \
__asm volatile("mov r0, %0 \n" \
"str r4, [r0, 4*4] \n" \
"str r5, [r0, 5*4] \n" \
"str r6, [r0, 6*4] \n" \
"str r7, [r0, 7*4] \n" \
"str r8, [r0, 8*4] \n" \
"str r9, [r0, 9*4] \n" \
"str r10, [r0, 10*4] \n" \
"str r11, [r0, 11*4] \n" \
"str r12, [r0, 12*4] \n" \
"str r13, [r0, 13*4] \n" \
"str r14, [r0, 14*4] \n" \
: \
: "r"(main_context.core.r) \
: "r0"); \
__asm volatile(" tst lr, #4 \n" \
" ite eq \n" \
" mrseq r0, msp \n" \
" mrsne r0, psp \n" \
" mov r1, lr \n" \
" ldr r2, =load_monitor_interrupt_handler \n" \
" bx r2 \n" \
: \
: \
: "r0", "r1", "r2"); \
} \
}
此代码旨在使用计时器中断获取 CPU 配置文件,但回溯展开可以从任何处理程序(包括故障处理程序)中重用。从下往上阅读代码:
- IRQ 函数必须用 属性定义
__naked__
,否则 GCC 的函数入口头会以不可预知的方式操纵 CPU 的状态,例如修改堆栈指针。
- 首先,我们保存所有其他不在异常条目结构中的核心寄存器。我们需要从一开始就从汇编开始执行此操作,因为当它们用作临时寄存器时,它们通常会被以后的 C 代码修改。
- 然后我们从中断之前重建堆栈指针;无论处理器之前处于处理程序还是线程模式,代码都可以工作。这个指针是异常入口结构。此代码不处理非 4 字节对齐的堆栈,但我从未见过 armgcc 这样做。
- 剩下的代码是C/C++,我们填入我们从libgcc中获取的内部结构,然后调用unwinding过程的内部实现。我们需要做一些调整来解决 libgcc 的某些假设,这些假设在异常进入时不成立。
- 在一种特殊情况下,展开不起作用,即如果异常发生在叶函数中,该叶函数在进入时不会将 LR 保存到堆栈中。当您尝试从进程模式执行回溯时,这永远不会发生,因为被调用的回溯函数将确保调用函数不是叶子。我试图通过在回溯过程本身期间调整 LR 寄存器来应用一些解决方法,但我不相信它每次都有效。我对如何更好地做到这一点的建议感兴趣。