1

我正在使用此处给出的建议为我的算法选择最佳 GPU。 https://stackoverflow.com/a/33488953/5371117

我查询我的 MacBook Pro 上的设备,使用boost::compute::system::devices();它返回以下设备列表。

Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
Intel(R) UHD Graphics 630
AMD Radeon Pro 560X Compute Engine

我想AMD Radeon Pro 560X Compute Engine用于我的目的,但是当我迭代找到具有最大评级=的设备时CL_DEVICE_MAX_CLOCK_FREQUENCY * CL_DEVICE_MAX_COMPUTE_UNITS。我得到以下结果:

Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz, 
freq: 2600, compute units: 12, rating:31200

Intel(R) UHD Graphics 630, 
freq: 1150, units: 24, rating:27600

AMD Radeon Pro 560X Compute Engine, 
freq: 300, units: 16, rating:4800

AMD GPU 的评分最低。我还查看了规格,在我看来,它CL_DEVICE_MAX_CLOCK_FREQUENCY没有返回正确的值。

根据 AMD 芯片规格https://www.amd.com/en/products/graphics/radeon-rx-560x,我的 AMD GPU 的基本频率为 1175 MHz,而不是 300MHz

根据英特尔芯片规格https://en.wikichip.org/wiki/intel/uhd_graphics/630,我的英特尔 GPU 的基本频率为 300 MHz,而不是 1150MHz,但它的升压频率为 1150MHz

std::vector<boost::compute::device> devices = boost::compute::system::devices();

std::pair<boost::compute::device, ai::int64> suitableDevice{};

for(auto& device: devices)
{
    auto rating = device.clock_frequency() * device.compute_units();
    std::cout << device.name() << ", freq: " << device.clock_frequency() << ", units: " << device.compute_units() << ", rating:" << rating << std::endl;
    if(suitableDevice.second < benchmark)
    {
        suitableDevice.first = device;
        suitableDevice.second = benchmark; 
     }
}      

我做错什么了吗?

4

2 回答 2

1

不幸的是,这些属性只能在实现中真正直接比较(相同的硬件制造商,相同的操作系统)。

我的建议是:

  • 首先过滤掉设备类型以外的任何东西CL_DEVICE_TYPE_GPU(除非没有任何可用的 GPU,在这种情况下,您可能希望回退到 CPU)。
  • 检查任何其他重要的设备属性。例如,如果您需要对特定 OpenCL 版本或扩展的支持,或者如果您需要特别大的工作组或本地内存,请检查所有剩余设备并过滤掉任何无法运行您的代码的设备。
  • 测试是否有任何剩余设备对该CL_DEVICE_HOST_UNIFIED_MEMORY属性返回 true。这些将是集成 GPU,它们通常比离散 GPU 慢,除非您受数据传输速度的限制,在这种情况下它们可能会更快。所以你会想要一种类型而不是另一种类型。
  • 如果在那之后您仍然有多个设备,您可以应用现有的启发式方法。
于 2019-12-30T15:13:57.600 回答
0

此代码将返回具有最高浮点性能的设备

select_device_with_most_flops(find_devices());

这是内存最多的设备

select_device_with_most_memory(find_devices());

首先,find_devices()返回系统中所有 OpenCL 设备的向量。select_device_with_most_memory()简单明了并且使用getInfo<CL_DEVICE_GLOBAL_MEM_SIZE>().

浮点性能由以下等式给出: FLOPs/s = cores/CU * CUs * IPC * 时钟频率

select_device_with_most_flops()更困难,因为 OpenCL 仅提供计算单元 (CU)getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>()的数量,对于 CPU 而言,线程数是线程数,而对于 GPU,则必须乘以每个 CU 的流处理器/ cuda 核心数,这是不同的对于 Nvidia、AMD 和 Intel 以及它们不同的微架构,通常在 4 到 128 之间。幸运的是,供应商包含在getInfo<CL_DEVICE_VENDOR>(). 因此,根据供应商和 CU 的数量,可以计算出每个 CU 的核心数。

下一部分是 FP32 IPC 或每时钟指令。对于大多数 GPU,这是 2,而对于最近的 CPU,这是 32,请参阅https://en.wikipedia.org/wiki/FLOPS?oldformat=true#FLOPs_per_cycle_for_various_processors 没有办法直接在 OpenCL 中找出 IPC,所以CPU 的 32 只是一个猜测。可以使用设备名称和查找表来更准确。getInfo<CL_DEVICE_TYPE>()==CL_DEVICE_TYPE_GPU如果设备是 GPU,则结果为 true。

最后一部分是时钟频率。OpenCL 以 MHz 为单位提供基本时钟频率getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>()。该设备可以提升更高的频率,因此这又是一个近似值。

所有这些一起给出了对浮点性能的估计。完整代码如下所示:

typedef unsigned int uint;
string trim(const string s) { // removes whitespace characters from beginnig and end of string s
    const int l = (int)s.length();
    int a=0, b=l-1;
    char c;
    while(a<l && ((c=s.at(a))==' '||c=='\t'||c=='\n'||c=='\v'||c=='\f'||c=='\r'||c=='\0')) a++;
    while(b>a && ((c=s.at(b))==' '||c=='\t'||c=='\n'||c=='\v'||c=='\f'||c=='\r'||c=='\0')) b--;
    return s.substr(a, 1+b-a);
}
bool contains(const string s, const string match) {
    return s.find(match)!=string::npos;
}
vector<Device> find_devices() {
    vector<Platform> platforms; // get all platforms (drivers)
    vector<Device> devices_available;
    vector<Device> devices; // get all devices of all platforms
    Platform::get(&platforms);
    if(platforms.size()==0) print_error("There are no OpenCL devices available. Make sure that the OpenCL 1.2 Runtime for your device is installed. For GPUs it comes by default with the graphics driver, for CPUs it has to be installed separately.");
    for(uint i=0; i<(uint)platforms.size(); i++) {
        devices_available.clear();
        platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &devices_available); // CL_DEVICE_TYPE_CPU, CL_DEVICE_TYPE_GPU
        if(devices_available.size()==0) continue; // no device of type device_type found in plattform i
        for(uint j=0; j<(uint)devices_available.size(); j++) devices.push_back(devices_available[j]);
    }
    print_device_list(devices);
    return devices;
}
Device select_device_with_most_flops(const vector<Device> devices) { // return device with best floating-point performance
    float best_value = 0.0f;
    uint best_i = 0; // index of fastest device
    for(uint i=0; i<(uint)devices.size(); i++) { // find device with highest (estimated) floating point performance
        const Device d = devices[i];
        //const string device_name = trim(d.getInfo<CL_DEVICE_NAME>());
        const string device_vendor = trim(d.getInfo<CL_DEVICE_VENDOR>()); // is either Nvidia, AMD or Intel
        const uint device_compute_units = (uint)d.getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>(); // compute units (CUs) can contain multiple cores depending on the microarchitecture
        const bool device_is_gpu = d.getInfo<CL_DEVICE_TYPE>()==CL_DEVICE_TYPE_GPU;
        const uint device_ipc = device_is_gpu?2u:32u; // IPC (instructions per cycle) is 2 for GPUs and 32 for most modern CPUs
        const uint nvidia = (uint)(contains(device_vendor, "NVIDIA")||contains(device_vendor, "vidia"))*(device_compute_units<=30u?128u:64u); // Nvidia GPUs usually have 128 cores/CU, except Volta/Turing (>30 CUs) which have 64 cores/CU
        const uint amd = (uint)(contains(device_vendor, "AMD")||contains(device_vendor, "ADVANCED")||contains(device_vendor, "dvanced"))*(device_is_gpu?64u:1u); // AMD GCN GPUs usually have 64 cores/CU, AMD CPUs have 1 core/CU
        const uint intel = (uint)(contains(device_vendor, "INTEL")||contains(device_vendor, "ntel"))*(device_is_gpu?8u:1u); // Intel integrated GPUs usually have 8 cores/CU, Intel CPUs have 1 core/CU
        const uint device_cores = device_compute_units*(nvidia+amd+intel);
        const uint device_clock_frequency = (uint)d.getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>(); // in MHz
        const float device_tflops = 1E-6f*(float)device_cores*(float)device_ipc*(float)device_clock_frequency; // estimated device floating point performance in TeraFLOPs/s
        if(device_tflops>best_value) { // device_memory>best_value
            best_value = device_tflops; // best_value = device_memory;
            best_i = i; // find index of fastest device
        }
    }
    return devices[best_i];
}
Device select_device_with_most_memory(const vector<Device> devices) { // return device with largest memory capacity
    float best_value = 0.0f;
    uint best_i = 0; // index of fastest device
    for(uint i=0; i<(uint)devices.size(); i++) { // find device with highest (estimated) floating point performance
        const Device d = devices[i];
        const float device_memory = 1E-3f*(float)(d.getInfo<CL_DEVICE_GLOBAL_MEM_SIZE>()/1048576ull); // in GB
        if(device_memory>best_value) {
            best_value = device_memory;
            best_i = i; // find index of fastest device
        }
    }
    return devices[best_i];
}
Device select_device_with_id(const vector<Device> devices, const int id) { // return device
    if(id>=0&&id<(int)devices.size()) {
        return devices[id];
    } else {
        print("Your selected device ID ("+to_string(id)+") is wrong.");
        return devices[0]; // is never executed, just to avoid compiler warnings
    }
}
于 2020-01-03T18:58:23.710 回答