1

我正在运行一个简单的回归 (OLS)

> lm_1 <- lm(Dependent_variable_1 ~ Independent_variable_1, data = data_1)
> summary(lm_1)

Call:
lm(formula = Dependent_variable_1  ~ Independent_variable_1, 
    data = data_1)

Residuals:
    Min      1Q  Median      3Q     Max 
-143187  -34084   -4990   37524  136293 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)         330853      13016  25.418  < 2e-16 ***
`GDP YoY% - Base`  3164631     689599   4.589 0.000118 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 66160 on 24 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared:  0.4674,    Adjusted R-squared:  0.4452 
F-statistic: 21.06 on 1 and 24 DF,  p-value: 0.0001181

自相关和异方差检验如下:

> dwtest(lm_1,alternative="two.sided")

    Durbin-Watson test

data:  lm_1
DW = 0.93914, p-value = 0.001591
alternative hypothesis: true autocorrelation is not 0

> bptest(lm_1)

    studentized Breusch-Pagan test

data:  lm_1
BP = 9.261, df = 1, p-value = 0.002341

然后我对自相关和异方差(HAC - Newey-West)进行稳健回归:

> coeftest(lm_1, vocv=NeweyWest(lm_1,lag=2, prewhite=FALSE))

t test of coefficients:

                  Estimate Std. Error t value  Pr(>|t|)    
(Intercept)         330853      13016 25.4185 < 2.2e-16 ***
Independent_variable_1  3164631     689599  4.5891 0.0001181 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

对于系数/标准误差,我得到了相同的结果。

这是正常的吗?这是因为样本量小吗?

4

0 回答 0