open import Data.Nat using (ℕ;suc;zero)
open import Data.Rational
open import Data.Product
open import Relation.Nullary
open import Data.Bool using (Bool;false;true)
halve : ℕ → ℚ
halve zero = 1ℚ
halve (suc p) = ½ * halve p
∃-halve : ∀ {a b} → 0ℚ < a → a < b → ∃[ p ] (halve p * b < a)
∃-halve {a} {b} 0<a a<b = h 1 where
h : ℕ → ∃[ p ] (halve p * b < a)
h p with halve p * b <? a
h p | .true because ofʸ b'<a = p , b'<a
h p | .false because ofⁿ ¬b'<a = h (suc p)
终止检查器在最后一种情况下失败了,这并不奇怪,因为递归显然既没有资金也没有结构。尽管如此,我很确定这应该是有效的,但不知道如何证明∃-halve
. 关于如何做到这一点的任何建议?