4

我是图像处理的新手,正在尝试编写用于腐蚀和膨胀的自定义方法。然后我尝试将我的结果与 OpenCV 腐蚀和膨胀函数结果进行比较。我给输入图像填充一个零,然后将内核与填充图像重叠。这是我的功能:

import numpy as np
import matplotlib.pyplot as plt

def operation(image, kernel, padding=0, operation=None):
    if operation:
        img_operated = image.copy() #this will be the image

        """
        The add_padding function below will simply add padding to the image, so the new array with one padding will
        look like ->

        [[0,0,0,0,0,0,0,0],
         [0,0,0,1,1,1,1,0],
         [0,0,0,1,1,1,1,0],
         [0,1,1,1,1,1,1,0],
         [0,1,1,1,1,1,1,0],
         [0,1,1,1,1,0,0,0],
         [0,1,1,1,1,0,0,0],
         [0,0,0,0,0,0,0,0]]
         )

        """
        image = add_padding(image, padding)

        print("Image is \n",  image)
        print("kernel is \n",kernel)
        print("="*40)

        vertical_window = padded.shape[0] - kernel.shape[0] #final vertical window position
        horizontal_window = padded.shape[1] - kernel.shape[1] #final horizontal window position

        print("Vertical Window limit: {}".format(vertical_window))
        print("Horizontal Window limit: {}".format(horizontal_window))
        print("="*40)

        #start with vertical window at 0 position
        vertical_pos = 0
        values = kernel.flatten() #to compare with values with overlapping element for erosion

        #sliding the window vertically
        while vertical_pos <= (vertical_window):
            horizontal_pos = 0

            #sliding the window horizontally
            while horizontal_pos <= (horizontal_window):
                dilation_flag = False
                erosion_flag = False
                index_position = 0

                #gives the index position of the box
                for i in range(vertical_pos, vertical_pos+kernel.shape[0]):
                    for j in range(horizontal_pos, horizontal_pos+kernel.shape[0]):

                        #First Case
                        if operation == "erosion":
                            if padded[i,j] == values[index_position]:
                                erosion_flag = True
                                index_position += 1
                            else:
                                erosion_flag = False
                                break

                        #Second Case
                        elif operation == "dilation":
                            #if we find 1, then break the second loop
                            if padded[i][j] == 1:
                                dilation_flag = True
                                break

                        else:
                            return  "Operation not understood!"

                    #if opertion is erosion and there is no match found, break the first 'for' loop
                    if opr == "erosion" and erosion_flag is False:
                        break

                    #if operation is dilation and we find a match, then break the first 'for' loop 
                    if opr == "dilation" and dilation_flag is True:
                        img_operated[vertical_pos, horizontal_pos] = 1
                        break

                #Check whether erosion flag is true after iterating over one complete overlap 
                if operation == "erosion" and erosion_flag is True:
                    img_operated[vertical_pos, horizontal_pos] = 1

                elif operation == "erosion" and erosion_flag is False:
                    img_operated[vertical_pos, horizontal_pos] = 0

                #increase the horizontal window position
                horizontal_pos += 1

            #increase the vertical window position
            vertical_pos += 1

        return img_operated

    return "Operation Required!"

array = np.array([[0,0,1,1,1,1],
               [0,0,1,1,1,1],
               [1,1,1,1,1,1],
               [1,1,1,1,1,1],
               [1,1,1,1,0,0],
               [1,1,1,1,0,0]], dtype=np.uint8)

kernel = np.array ([[0, 1, 0],
                    [1, 1, 1],
                    [0, 1, 0]], dtype = np.uint8)

#image will be padded with one zeros around
result_erosion = operation(array, kernel, 1, "erosion")
result_dilation = operation(array, kernel, 1, "dilation")

#CV2 Erosion and Dilation
cv2_erosion = cv2.erode(array, kernel, iterations=1) 
cv2_dilation = cv2.dilate(array, kernel, iterations=1)

膨胀结果匹配,但腐蚀结果不匹配。我不确定为什么会这样。是因为一些填充问题吗?OpenCV 是否填充图像?还是我错误地执行了腐蚀方法?这是结果的图像:

最终结果

4

1 回答 1

3

您的代码有两个问题:

  1. 您没有检查内核的值。对于膨胀,这并不重要,但您会看到不同输入图像的差异。

  2. 侵蚀很混乱。正如我在评论中提到的,腐蚀是膨胀的完全逻辑逆。您可以将腐蚀视为背景的膨胀:(erosion(image) == ~dilation(~image)图像~的逻辑否定)。因此,您应该能够对腐蚀使用与膨胀完全相同的代码和逻辑,但检查您是否在内核中看到背景像素 (0),在这种情况下,您将输出中的像素设置为背景(0)。为了复制 OpenCV 侵蚀的结果,填充必须带有前景 (1)。

这是更正后的代码。我使用 OpenCV 编写了一个add_padding函数,因为它在 OP 中丢失了。可以显着简化代码,例如通过对两个操作使用单个标志;通过在函数顶部只检查一次操作字符串,并设置一个值为 0 或 1 的变量,以便在比较输入和修改输出时使用;并通过使用 for 循环而不是 while 循环来迭代图像。我会将这些更改留给感兴趣的读者。

import numpy as np
import matplotlib.pyplot as plt
import cv2

def add_padding(image, padding, value):
    return cv2.copyMakeBorder(image, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=value)

def operation(image, kernel, padding=0, operation=None):
    if operation:
        img_operated = image.copy() #this will be the image

        padding_value = 0           # <<< ADDED
        if operation == "erosion":  # <<< ADDED
            padding_value = 1       # <<< ADDED
        padded = add_padding(image, padding, padding_value)  # <<< MODIFIED

        vertical_window = padded.shape[0] - kernel.shape[0] #final vertical window position
        horizontal_window = padded.shape[1] - kernel.shape[1] #final horizontal window position

        #start with vertical window at 0 position
        vertical_pos = 0

        #sliding the window vertically
        while vertical_pos <= vertical_window:
            horizontal_pos = 0

            #sliding the window horizontally
            while horizontal_pos <= horizontal_window:
                dilation_flag = False
                erosion_flag = False

                #gives the index position of the box
                for i in range(kernel.shape[0]):      # <<< MODIFIED
                    for j in range(kernel.shape[1]):  # <<< MODIFIED
                        if kernel[i][j] == 1:         # <<< ADDED
                            #First Case
                            if operation == "erosion":
                                #if we find 0, then break the second loop
                                if padded[vertical_pos+i][horizontal_pos+j] == 0:  # <<< MODIFIED
                                    erosion_flag = True                            # <<< MODIFIED
                                    break
                            #Second Case
                            elif operation == "dilation":
                                #if we find 1, then break the second loop
                                if padded[vertical_pos+i][horizontal_pos+j] == 1:  # <<< MODIFIED
                                    dilation_flag = True
                                    break
                            else:
                                return  "Operation not understood!"

                    #if opertion is erosion and there is no match found, break the first 'for' loop
                    if operation == "erosion" and erosion_flag:         # <<< MODIFIED
                        img_operated[vertical_pos, horizontal_pos] = 0  # <<< ADDED
                        break

                    #if operation is dilation and we find a match, then break the first 'for' loop 
                    if operation == "dilation" and dilation_flag:       # <<< FIXED
                        img_operated[vertical_pos, horizontal_pos] = 1
                        break

                # !!! Removed unnecessary checks here

                #increase the horizontal window position
                horizontal_pos += 1

            #increase the vertical window position
            vertical_pos += 1

        return img_operated

    return "Operation Required!"

array = np.array([[0,0,1,1,1,1],
               [0,0,1,1,1,1],
               [1,1,1,1,1,1],
               [1,1,1,1,1,1],
               [1,1,1,1,0,0],
               [1,1,1,1,0,0]], dtype=np.uint8)

kernel = np.array ([[0, 1, 0],
                    [1, 1, 1],
                    [0, 1, 0]], dtype = np.uint8)

#image will be padded with one zeros around
result_erosion = operation(array, kernel, 1, "erosion")
result_dilation = operation(array, kernel, 1, "dilation")

#CV2 Erosion and Dilation
cv2_erosion = cv2.erode(array, kernel, iterations=1)
cv2_dilation = cv2.dilate(array, kernel, iterations=1)
于 2019-11-24T05:31:53.267 回答