我们一直在关注有关使用 MLFlow 将 ML 模型从 Azure Databricks 部署到 Azure ML 的最新 Microsoft 网络研讨会,当尝试使用以下代码从 Databricks 笔记本运行实验时出现以下错误:
experimentName="someExperimentName"
mlflow.set_experiment(experimentName)
错误信息:
UnsupportedModelRegistryStoreURIException:不支持的 URI 'adbazureml://westus.experiments.azureml.net/history/v1.0/subscriptions/cemrecdsap-t10us-20180830/resourceGroups/2f5a718e-7c56-4dd3-aa7b-03a19b70667/providers/Microsoft.MachineLearningServices/workspaces /cemrecdsap-mlservice' 用于模型注册表存储。支持的方案有:['', 'file', 'sqlite', 'https', 'databricks', 'postgresql', 'mysql', 'http', 'mssql']
我们在 Microsoft MLflow 网络研讨会中建议使用的初始化脚本:(在此处可用,但现在已删除 - https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/azure-databricks/链接/azureml-cluster-init.sh )
#!/bin/bash
############## START CONFIGURATION #################
# Provide the required *AzureML* workspace information
region="westus"
subscriptionId="bcb65f42-f234-4bff-91cf-9ef816cd9936"
resourceGroupName="dev-rg"
workspaceName="myazuremlws"
# Optional config directory
configLocation="/databricks/config.json"
############### END CONFIGURATION #################
# Drop the workspace configuration on the cluster
sudo touch $configLocation
sudo echo {\\"subscription_id\\": \\"${subscriptionId}\\", \\"resource_group\\": \\"${resourceGroupName}\\", \\"workspace_name\\": \\"${workspaceName}\\"} > $configLocation
# Set the MLflow Tracking URI
trackingUri="adbazureml://${region}.experiments.azureml.net/history/v1.0/subscriptions/${subscriptionId}/resourceGroups/${resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/${workspaceName}"
sudo echo export MLFLOW_TRACKING_URI=${trackingUri} >> /databricks/spark/conf/spark-env.sh
我们使用最新的 MLFlow 版本,1.4
网络研讨会中使用的adbazureml协议是否有可能不被 MLFlow 支持?还是我们错过了其他东西?