我正在尝试将 TF 2.0 saved_model 转换为 Jetson Nano 上的 tensorRT。
该模型保存在 TF 2.0.0 中。nano 有 Jetpack 4.2.2 w/ TensorRT __ 和 Tensorflow 1.14(这是 Jetson 的最新 Tensorflow 版本)。
我一直遵循这里的说明,这些说明描述了如何将 TF 2.0.0 saved_model 转换为 TensorRT。
下面是我的代码:
import tensorflow as tf
from tensorflow.python.compiler.tensorrt import trt_convert as trt
tf.enable_eager_execution()
converter = trt.TrtGraphConverterV2(input_saved_model_dir=input_saved_model_dir)
converter.convert()
converter.save(output_saved_model_dir)
saved_model_loaded = tf.saved_model.load(
output_saved_model_dir, tags=[tag_constants.SERVING])
graph_func = saved_model_loaded.signatures[
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
frozen_func = convert_to_constants.convert_variables_to_constants_v2(
graph_func)
def wrap_func(*args, **kwargs):
# Assumes frozen_func has one output tensor
return frozen_func(*args, **kwargs)[0]
output = wrap_func(input_data).numpy()
它似乎开始成功转换。但是,KeyError: 'serving_default'
当它到达convert_to_tensor
线路时出现错误。我的完整打印输出在下面找到(对于 SO 来说太长了),但是 python 回溯出现在下面。我怎样才能解决这个问题?
谢谢!
打印输出摘要(此处完整打印输出):
Traceback (most recent call last):
File "tst.py", line 38, in <module>
convert_savedmodel()
File "tst.py", line 24, in convert_savedmodel
converter.convert()
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/compiler/tensorrt/trt_convert.py", line 956, in convert
func = self._saved_model.signatures[self._input_saved_model_signature_key]
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/signature_serialization.py", line 196, in __getitem__
return self._signatures[key]
KeyError: 'serving_default'