2

我正在尝试使用periodicon 函数为路径设置动画,DynamicMap但我的 Jupyter Notebook 开始抱怨以下错误消息:

IOPub message rate exceeded.
The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.
To change this limit, set the config variable
`--NotebookApp.iopub_msg_rate_limit`.

Current values:
NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec)
NotebookApp.rate_limit_window=3.0 (secs)

这是我的代码:

def paths3():
    N = 50
    x = np.linspace(0,10,N)
    y = (2 * x + 3)

    f = 0.0
    g = 0.5

    while True:
        i = np.clip(int((N-1)*f),0,N-1)
        j = np.clip(int((N-1)*(f-g)),0,N-1)
        if j < 0:
            j = 0

        alpha_max = 1 if f <= 1 else ((1.0-(f-g))*N) / N

        alpha = np.concatenate((np.zeros(j),np.linspace(0.1,alpha_max,(i-j+1)),np.zeros(N-(i+1))))

        data = pd.DataFrame({'x':x,'y':y,'alpha':alpha})

        yield hv.Path(data, vdims='alpha').opts(alpha='alpha')

        if f > 2:
            f = 0
        else:
            f += 0.01
paths3 = paths3()
dmap = hv.DynamicMap(paths3, streams=[Stream.define('Next')()])
dmap
dmap.periodic(0.1, 100)

我看到人们也遇到过类似的问题,但那是在 2017 年的旧版 Jupyter Notebook 上。

这是我的 Jupyter Notebook 中的“关于”部分:

Server Information:

You are using Jupyter notebook.

The version of the notebook server is: 6.0.1
The server is running on this version of Python:

Python 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 14:00:49) [MSC v.1915 64 bit (AMD64)]

Current Kernel Information:

Python 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 14:00:49) [MSC v.1915 64 bit (AMD64)]
Type "copyright", "credits" or "license" for more information.

IPython 5.8.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.
4

1 回答 1

0

将消息速率设置为 10,000 或 100,000 是否有帮助(启动 jupyter notebook 时),如下所示:

jupyter notebook --NotebookApp.iopub_msg_rate_limit=10000

这个 SO 问题指的是类似的问题:
IOPub data rate exceeded in Jupyter notebook (when 查看 image)

于 2019-11-06T12:41:02.557 回答