在下面的代码中,我在数值上求解n=0.5
(常数)的方程,但是对于您选择的其他值,它应该是相似的。
请注意 SOLVE 函数如何只返回找到的第一个解决方案。因此,我直接调用 MuPAD 引擎,并指定每次搜索解决方案的时间间隔:
%# lets plot the function: f(x) = exp(-x)+x*exp(-x)
h(1) = ezplot('0.5', [-1.5 10]); hold on
h(2) = ezplot('exp(-x)+x.*exp(-x)', [-1.5 10]);
set(h(1), 'LineStyle',':', 'Color','r')
legend(h, 'y = 0.5', 'y = exp(-x)+x.*exp(-x)')
%# The numeric solver only returns the first solution that it finds
x = solve('exp(-x)+x*exp(-x)=0.5')
x = vpa(x)
%# we can call the MuPAD solver and give the interval where solution can be found
x1 = evalin(symengine, 'numeric::solve(exp(-x)+x*exp(-x)=0.5, x = -1..0)')
x2 = evalin(symengine, 'numeric::solve(exp(-x)+x*exp(-x)=0.5, x = 0..3)')
%# show the solutions on the plot
plot([x1 x2], 0.5, 'ro')
SOLVE 返回的解决方案:
x =
- 1.0*lambertw(0, -1/(2*exp(1))) - 1.0
x =
-0.76803904701346556525568352607755
MuPAD 数值解法:
x1 =
-0.76803904701346556525568352607755
x2 =
1.6783469900166606534128845120945