2

我正在计算 R 中模型的 AUC。该模型已经过训练以预测两级因子(好/坏)。它已应用于具有三级结果(好/坏/缺失)的数据。我对得分部分很好。我根据每个观察的一组预测变量得到一个概率。

我不明白的部分是当我使用 计算 AUC 时会发生什么roc(data$label, data$score),因为现在roc$label有 3 个级别(好/坏/缺失),但分数是在只有 2 个级别(好/坏)的数据上训练的。新级别被忽略了吗?我应该从数据中手动排除所有此类观察结果以获得准确的 AUC 测量吗?

data <- structure(list(label = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 1L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L), .Label = c("missing", 
"good", "bad"), class = "factor"), score = c(0.151147571051044, 
0.0411329810171418, 0.0688491931089625, 0.0457818202643564, 0.0411038297454905, 
0.0652004019004794, 0.105964115208592, 0.0538514549969684, 0.0415476305130247, 
0.0533831523731155, 0.0639788335617257, 0.0434341986489527, 0.0520826001358534, 
0.0642210548642832, 0.0536219837901353, 0.0415821872079014, 0.0416555537422, 
0.0491937562992912, 0.0469082976746886, 0.0538194884632293)), row.names = c(NA, 
-20L), class = c("tbl_df", "tbl", "data.frame"))

roc(data$label, data$score)
4

2 回答 2

1

类别missingdata$label因子的 3 个水平之一。
您可以设置missing为真正的缺失,然后降低此级别:

library(pROC)
# Set 'missing' to a real missing
data$label[data$label=="missing"] <- NA
# Drop 'missing' levels from 'label' factor
data$label <- droplevels(data$label)
# ROC estimation
roc(data$label, data$score)

输出是:

Setting levels: control = good, case = bad
Setting direction: controls > cases

Call:
roc.default(response = data$label, predictor = data$score)

Data: data$score in 16 controls (data$label good) > 1 cases (data$label bad).
Area under the curve: 0.8125
于 2019-10-04T11:23:49.563 回答
1

除非你有一个特别旧的 pROC 版本,或者你有一些使诊断消息静音的东西,否则它应该告诉你它在做什么:

> roc(data$label, data$score)
Setting levels: control = missing, case = good
Setting direction: controls < cases

如您所见,它使用“缺失”类作为对照或否定类。

它继续向您显示使用了哪些数据:

[...]
Data: data$score in 3 controls (data$label missing) < 16 cases (data$label good).

您可以再次观察到它使用“缺失”标签作为控制。

最后,它为您提供了如何解决问题的提示:

[...]
Warning message:
In roc.default(data$label, data$score) :
  'response' has more than two levels. Consider setting 'levels' explicitly or using 'multiclass.roc' instead

在您的情况下,levels按照建议设置参数是最简单的:

> roc(data$label, data$score, levels=c("good", "bad"))
Setting direction: controls > cases

Call:
roc.default(response = data$label, predictor = data$score, levels = c("good",     "bad"))

Data: data$score in 16 controls (data$label good) > 1 cases (data$label bad).
Area under the curve: 0.8125

现在它按照您的要求正确使用了好/坏级别。

最后一件事,请注意 pROC 仍在自动设置方向:

Setting direction: controls > cases

您应该确保这与您在训练数据上获得的方向相匹配(无论正例高于还是低于负例)。

train.roc <- roc(train.data$label, train.data$score, levels=c("good", "bad"))
roc(data$label, data$score, levels=c("good", "bad"), direction=train.roc$direction)

如果不这样做,您可能会在您的 AUC 中引入一些偏差,并且您可能会认为您的预测器表现出色,但实际上并非如此。

通常,您希望尽可能显式设置levelsand参数。direction如果方向在训练和测试之间以某种方式颠倒。

于 2019-10-04T15:57:24.003 回答