正如帕特里克所提到的,在 SMTLib 中不可能对任意集合进行此类操作(例如对它们求和)。但是,您有更多信息:您知道集合的基数是 5,因此您可以对总和进行间接编码。
诀窍是明确地构造一组所需的基数并对这些元素求和。显然,这只有在集合足够小的情况下才有效,但如果需要,您可以从高级 API 自动“生成”代码。(手工编码会很困难!)
以下适用于z3;不幸的是,CVC4 和 Z3 的函数名称略有不同Sets
:
(set-option :produce-models true)
; declare-original set
(declare-fun A () (Set Int))
(assert (= 5 (card A)))
; declare the "elements". We know there are 5 in this case. Declare one for each.
(declare-fun elt1 () Int)
(declare-fun elt2 () Int)
(declare-fun elt3 () Int)
(declare-fun elt4 () Int)
(declare-fun elt5 () Int)
; form the set out of these elements:
(define-fun B () (Set Int) (store (store (store (store (store ((as const (Array Int Bool)) false) elt1 true)
elt2 true)
elt3 true)
elt4 true)
elt5 true))
; make sure our set is equal to the set just constructed:
(assert (= A B))
; now sum-up the elements
(declare-fun sum () Int)
(assert (= sum (+ elt1 elt2 elt3 elt4 elt5)))
(check-sat)
(get-value (elt1 elt2 elt3 elt4 elt5 sum A))
这会产生:
$ z3 a.smt2
sat
((elt1 0)
(elt2 1)
(elt3 3)
(elt4 6)
(elt5 7)
(sum 17)
(A (let ((a!1 (store (store (store ((as const (Set Int)) false) 0 true) 1 true)
3
true)))
(store (store a!1 6 true) 7 true))))
对于 CVC4,编码类似:
(set-option :produce-models true)
(set-logic ALL_SUPPORTED)
; declare-original set
(declare-fun A () (Set Int))
(assert (= 5 (card A)))
; declare the "elements". We know there are 5 in this case. Declare one for each.
(declare-fun elt1 () Int)
(declare-fun elt2 () Int)
(declare-fun elt3 () Int)
(declare-fun elt4 () Int)
(declare-fun elt5 () Int)
; form the set out of these elements:
(define-fun B () (Set Int) (union (singleton elt1)
(union (singleton elt2)
(union (singleton elt3)
(union (singleton elt4) (singleton elt5))))))
; make sure our set is equal to the set just constructed:
(assert (= A B))
; now sum-up the elements
(declare-fun sum () Int)
(assert (= sum (+ elt1 elt2 elt3 elt4 elt5)))
(check-sat)
(get-value (elt1 elt2 elt3 elt4 elt5 sum A))
为此,cvc4 产生:
sat
((elt1 (- 4)) (elt2 (- 3)) (elt3 (- 2)) (elt4 (- 1)) (elt5 0) (sum (- 10)) (A (union (union (union (union (singleton 0) (singleton (- 1))) (singleton (- 2))) (singleton (- 3))) (singleton (- 4)))))
如果基数不固定;我认为除非域是有限的(或从无限域的有限子集中提取),否则我认为您无法编写代码,正如帕特里克所描述的那样。
希望有帮助!