我想计算经纬度之间的地理距离。
我已经在 Python 中检查了这个线程Vectorizing Haversine distance calculation, 但是当我将它用于两组不同的坐标时,我得到了一个错误。
df1 的大小可以以百万计,如果有任何其他方法可以在更短的时间内计算出准确的地理距离,那将非常有帮助。
length1 = 1000
d1 = np.random.uniform(-90, 90, length1)
d2 = np.random.uniform(-180, 180, length1)
length2 = 100
d3 = np.random.uniform(-90, 90, length2)
d4 = np.random.uniform(-180, 180, length2)
coords = tuple(zip(d1, d2))
df1 = pd.DataFrame({'coordinates':coords})
coords = tuple(zip(d3, d4))
df2 = pd.DataFrame({'coordinates':coords})
def get_diff(df1, df2):
data1 = np.array(df1['coordinates'].tolist())
data2 = np.array(df2['coordinates'].tolist())
lat1 = data1[:,0]
lng1 = data1[:,1]
lat2 = data2[:,0]
lng2 = data2[:,1]
#print(lat1.shape)
#print(lng1.shape)
#print(lat2.shape)
#print(lng2.shape)
diff_lat = lat1[:,None] - lat2
diff_lng = lng1[:,None] - lng2
#print(diff_lat.shape)
#print(diff_lng.shape)
d = np.sin(diff_lat/2)**2 + np.cos(lat1[:,None])*np.cos(lat1) * np.sin(diff_lng/2)**2
return 2 * 6371 * np.arcsin(np.sqrt(d))
get_diff(df1, df2)
ValueError Traceback (most recent call last)
<ipython-input-58-df06c7cff72c> in <module>
----> 1 get_diff(df1, df2)
<ipython-input-57-9bd8f10189e6> in get_diff(df1, df2)
26 print(diff_lat.shape)
27 print(diff_lng.shape)
---> 28 d = np.sin(diff_lat/2)**2 + np.cos(lat1[:,None])*np.cos(lat1) * np.sin(diff_lng/2)**2
29 return 2 * 6371 * np.arcsin(np.sqrt(d))
ValueError: operands could not be broadcast together with shapes (1000,1000) (1000,100)