我有一个带有两个邮政编码和相应的纬度和经度的大型数据集(2.6M 行),我正在尝试计算它们之间的距离。我主要使用该包geosphere
来计算邮政编码之间的文森蒂椭圆体距离,但我的数据集需要大量时间。什么是实现这一点的快速方法?
我试过的
library(tidyverse)
library(geosphere)
zipdata <- select(fulldata,originlat,originlong,destlat,destlong)
## Very basic approach
for(i in seq_len(nrow(zipdata))){
zipdata$dist1[i] <- distm(c(zipdata$originlat[i],zipdata$originlong[i]),
c(zipdata$destlat[i],zipdata$destlong[i]),
fun=distVincentyEllipsoid)
}
## Tidyverse approach
zipdata <- zipdata%>%
mutate(dist2 = distm(cbind(originlat,originlong), cbind(destlat,destlong),
fun = distHaversine))
这两种方法都非常缓慢。我知道 210 万行永远不会是一个“快速”的计算,但我认为它可以做得更快。我在较小的测试数据上尝试了以下方法,但没有任何运气,
library(doParallel)
cores <- 15
cl <- makeCluster(cores)
registerDoParallel(cl)
test <- select(head(fulldata,n=1000),originlat,originlong,destlat,destlong)
foreach(i = seq_len(nrow(test))) %dopar% {
library(geosphere)
zipdata$dist1[i] <- distm(c(zipdata$originlat[i],zipdata$originlong[i]),
c(zipdata$destlat[i],zipdata$destlong[i]),
fun=distVincentyEllipsoid)
}
stopCluster(cl)
任何人都可以帮助我以正确的方式使用doParallel
withgeosphere
或更好的方式来处理这个问题吗?
编辑:来自(一些)回复的基准
## benchmark
library(microbenchmark)
zipsamp <- sample_n(zip,size=1000000)
microbenchmark(
dave = {
# Dave2e
zipsamp$dist1 <- distHaversine(cbind(zipsamp$patlong,zipsamp$patlat),
cbind(zipsamp$faclong,zipsamp$faclat))
},
geohav = {
zipsamp$dist2 <- geodist(cbind(long=zipsamp$patlong,lat=zipsamp$patlat),
cbind(long=zipsamp$faclong,lat=zipsamp$faclat),
paired = T,measure = "haversine")
},
geovin = {
zipsamp$dist3 <- geodist(cbind(long=zipsamp$patlong,lat=zipsamp$patlat),
cbind(long=zipsamp$faclong,lat=zipsamp$faclat),
paired = T,measure = "vincenty")
},
geocheap = {
zipsamp$dist4 <- geodist(cbind(long=zipsamp$patlong,lat=zipsamp$patlat),
cbind(long=zipsamp$faclong,lat=zipsamp$faclat),
paired = T,measure = "cheap")
}
,unit = "s",times = 100)
# Unit: seconds
# expr min lq mean median uq max neval cld
# dave 0.28289613 0.32010753 0.36724810 0.32407858 0.32991396 2.52930556 100 d
# geohav 0.15820531 0.17053853 0.18271300 0.17307864 0.17531687 1.14478521 100 b
# geovin 0.23401878 0.24261274 0.26612401 0.24572869 0.24800670 1.26936889 100 c
# geocheap 0.01910599 0.03094614 0.03142404 0.03126502 0.03203542 0.03607961 100 a
一个简单的all.equal
测试表明,对于我的数据集,haversine 方法等于 vincenty 方法,但与geodist
包中的“便宜”方法具有“平均相对差异:0.01002573”。