在我看来,使用Tensorflow Hub
或使用Pre-Trained Models
内部tf.keras.applications
更可取,因为在任何一种情况下,保存模型都不需要太多代码更改,以使其与 Tensorflow Serving 兼容。
MobileNet
内部存在的用于重用预训练模型的代码tf.keras.applications
如下所示:
#Import MobileNet V2 with pre-trained weights AND exclude fully connected layers
IMG_SIZE = 224
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras import Model
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3)
# Create the base model from the pre-trained model MobileNet V2
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
# Add Global Average Pooling Layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# Add a Output Layer
my_mobilenetv2_output = Dense(5, activation='softmax')(x)
# Combine whole Neural Network
my_mobilenetv2_model = Model(inputs=base_model.input, outputs=my_mobilenetv2_output)
您可以使用下面给出的代码保存模型:
version = 1
MODEL_DIR = 'Image_Classification_Model'
export_path = os.path.join(MODEL_DIR, str(version))
tf.keras.models.save_model(model = model, filepath = export_path)