2

我希望查看训练 tf.keras 模型的最终输出。在这种情况下,它将是来自 softmax 函数的预测数组,例如 [0,0,0,1,0,1]。

这里的其他线程建议使用 model.predict(training_data),但这不适用于我的情况,因为我在训练和验证中使用 dropout,因此神经元被随机丢弃,再次使用相同的数据进行预测会给出不同的结果.

def get_model():
    inputs = tf.keras.layers.Input(shape=(input_dims,))
    x = tf.keras.layers.Dropout(rate=dropout_rate)(inputs, training=True)
    x = tf.keras.layers.Dense(units=29, activation='relu')(x)
    x = tf.keras.layers.Dropout(rate=dropout_rate)(x, training=True)  
    x = tf.keras.layers.Dense(units=15, activation='relu')(x)
    outputs = tf.keras.layers.Dense(2, activation='softmax')(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',      
                  metrics=['sparse_categorical_accuracy'])
    return model

myModel = get_model()
myModel.summary()
myModel.fit(X_train, y_train,
           batch_size = batch_size,
           epochs= epochs,
           verbose = 1,
           validation_data = (X_val, y_val))

在 tensorflow 中,您可以很容易地在训练后获取模型的输出。这是来自Github 存储库的示例:

input = tf.placeholder(tf.float32, shape=[None, INPUT_DIMS])
labels = tf.placeholder(tf.float32, shape=[None])

hidden = tf.nn.tanh(make_nn_layer(normalized, NUM_HIDDEN))
logits = make_nn_layer(hidden, NUM_CLASSES)
outputs = tf.argmax(logits, 1)

int_labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, int_labels, name='xentropy')
train_step = tf.train.AdamOptimizer().minimize(cross_entropy)

correct_prediction = tf.equal(outputs, int_labels)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())

    validation_dict = {
        input: validation_data[:,0:7],
        labels: validation_data[:,7],}

    for i in range(NUM_BATCHES):
        batch = training_data[numpy.random.choice(training_size, BATCH_SIZE, False),:]
        train_step.run({input: batch[:,0:7], labels: batch[:,7]})

        if i % 100 == 0 or i == NUM_BATCHES - 1:
            print('Accuracy %.2f%% at step %d' % (accuracy.eval(validation_dict) * 100, i))

    output_data = outputs.eval({input: data_vector[:,0:7]})

我可以从经过训练的模型中获得的唯一输出似乎是一个历史对象。还有一个 myModel.output 对象,但它是一个张量,如果不将数据放入其中,我就无法评估。有任何想法吗?

4

1 回答 1

3

据我所知,在调用层时,您无法在通过后关闭 dropout training=True(除非您将权重转移到具有相同架构的新模型中)。但是,您可以在正常情况下构建和训练模型(即training在调用中不使用参数),然后通过定义后端函数(即keras.backend.function())和设置学习阶段(即keras.backend.learning_phase()):

# build your model normally (i.e. without using `training=True` argument)

# train your model...

from keras import backend as K

func = K.function(model.inputs + [K.learning_phase()], model.outputs)

# run the model with dropout layers being active, i.e. learning_phase == 1
preds = func(list_of_input_arrays + [1])

# run the model with dropout layers being inactive, i.e. learning_phase == 0
preds = func(list_of_input_arrays + [0])

更新:正如我上面建议的,另一种方法是定义一个具有相同架构但不设置的新模型training=True,然后将权重从训练模型转移到这个新模型。为此,我只需training向您的函数添加一个参数get_model()

def get_model(training=None):
    inputs = tf.keras.layers.Input(shape=(input_dims,))
    x = tf.keras.layers.Dropout(rate=dropout_rate)(inputs, training=training)
    x = tf.keras.layers.Dense(units=29, activation='relu')(x)
    x = tf.keras.layers.Dropout(rate=dropout_rate)(x, training=training)  
    x = tf.keras.layers.Dense(units=15, activation='relu')(x)
    outputs = tf.keras.layers.Dense(2, activation='softmax')(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',      
                  metrics=['sparse_categorical_accuracy'])
    return model

# build a model with dropout layers active in both training and test phases
myModel = get_model(training=True)
# train the model
myModel.fit(...)

# build a clone of the model with dropouts deactivated in test phase
myTestModel = get_model()  # note: the `training` is `None` by default
# transfer the weights from the trained model to this model
myTestModel.set_weights(myModel.get_weights())
# use the new model in test phase; the dropouts would not be active
myTestModel.predict(...)
于 2019-08-10T03:45:34.080 回答