0

我需要在同一个数据集中拟合几个洛伦兹峰,其中一些是重叠的。我最需要的功能是峰值位置(中心),但我似乎无法拟合这些数据中的所有峰值。

我首先尝试使用 scipy 的优化曲线拟合,但是我无法让边界起作用,它会尝试拟合整个光谱范围。我一直在使用 python 包 lmfit 并获得不错的结果,但是我似乎无法很好地选择重叠峰。

你可以在这里看到带有标记峰的原始光谱 和我的拟合结果

你可以在这里找到我正在使用的数据

import os
import matplotlib.pyplot as plt
import numpy as np
from lmfit.models import LorentzianModel

test=np.loadtxt('filename.txt')

plt.figure()
#
lz1 = LorentzianModel(prefix='lz1_')
pars=lz1.guess(y,x=x)
pars.update(lz1.make_params())
pars['lz1_center'].set(0.61, min=0.5, max=0.66)
pars['lz1_amplitude'].set(0.028)
pars['lz1_sigma'].set(0.7)

lz2 = LorentzianModel(prefix='lz2_')
pars.update(lz2.make_params())
pars['lz2_center'].set(0.76, min=0.67, max=0.84)
pars['lz2_amplitude'].set(0.083)
pars['lz2_sigma'].set(0.04)

lz3 = LorentzianModel(prefix='lz3_')
pars.update(lz3.make_params())
pars['lz3_center'].set(0.85,min=0.84, max=0.92)
pars['lz3_amplitude'].set(0.048)
pars['lz3_sigma'].set(0.05)

lz4 = LorentzianModel(prefix='lz4_')
pars.update(lz4.make_params())
pars['lz4_center'].set(0.98, min=0.94, max=1.0)
pars['lz4_amplitude'].set(0.028)
pars['lz4_sigma'].set(0.02)

lz5 = LorentzianModel(prefix='lz5_')
pars.update(lz5.make_params())
pars['lz5_center'].set(1.1, min=1.0, max=1.2)
pars['lz5_amplitude'].set(0.037)
pars['lz5_sigma'].set(0.07)

lz6 = LorentzianModel(prefix='lz6_')
pars.update(lz6.make_params())
pars['lz6_center'].set(1.4, min=1.2, max=1.5)
pars['lz6_amplitude'].set(0.048)
pars['lz6_sigma'].set(0.45)

lz7 = LorentzianModel(prefix='lz7_')
pars.update(lz7.make_params())
pars['lz7_center'].set(1.54,min=1.4, max=1.6)
pars['lz7_amplitude'].set(0.037)
pars['lz7_sigma'].set(0.03)

lz8 = LorentzianModel(prefix='lz8_')
pars.update(lz8.make_params())
pars['lz8_center'].set(1.7, min=1.6, max=1.8)
pars['lz8_amplitude'].set(0.04)
pars['lz8_sigma'].set(0.17)

mod = lz1 + lz2 + lz3 + lz4 + lz5 + lz6 +lz7 + lz8
init = mod.eval(pars,x=x)

out=mod.fit(y,pars,x=x)
print(out.fit_report(min_correl=0.5))
plt.scatter(x,y, s=1)
plt.plot(x,init,'k:')
plt.plot(x,out.best_fit, 'r-')
4

2 回答 2

2

实际上,只需添加一个二次背景并提升质心的边界就可以得到一个不错的拟合。

使用您的数据,我稍微修改了您的示例::

#!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
from lmfit.models import LorentzianModel, QuadraticModel

test = np.loadtxt('spectra.txt')
xdat = test[0, :]
ydat = test[1, :]

def add_peak(prefix, center, amplitude=0.005, sigma=0.05):
    peak = LorentzianModel(prefix=prefix)
    pars = peak.make_params()
    pars[prefix + 'center'].set(center)
    pars[prefix + 'amplitude'].set(amplitude)
    pars[prefix + 'sigma'].set(sigma, min=0)
    return peak, pars

model = QuadraticModel(prefix='bkg_')
params = model.make_params(a=0, b=0, c=0)

rough_peak_positions = (0.61, 0.76, 0.85, 0.99, 1.10, 1.40, 1.54, 1.7)
for i, cen in enumerate(rough_peak_positions):
    peak, pars = add_peak('lz%d_' % (i+1), cen)
    model = model + peak
    params.update(pars)

init = model.eval(params, x=xdat)
result = model.fit(ydat, params, x=xdat)
comps = result.eval_components()

print(result.fit_report(min_correl=0.5))

plt.plot(xdat, ydat, label='data')
plt.plot(xdat, result.best_fit, label='best fit')
for name, comp in comps.items():
    plt.plot(xdat, comp, '--', label=name)
plt.legend(loc='upper right')
plt.show()

打印报告

[[Model]]
    ((((((((Model(parabolic, prefix='bkg_') + Model(lorentzian, prefix='lz1_')) + Model(lorentzian, prefix='lz2_')) + Model(lorentzian, prefix='lz3_')) + Model(lorentzian, prefix='lz4_')) + Model(lorentzian, prefix='lz5_')) + Model(lorentzian, prefix='lz6_')) + Model(lorentzian, prefix='lz7_')) + Model(lorentzian, prefix='lz8_'))
[[Fit Statistics]]
    # fitting method   = leastsq
    # function evals   = 1101
    # data points      = 800
    # variables        = 27
    chi-square         = 7.3824e-04
    reduced chi-square = 9.5504e-07
    Akaike info crit   = -11062.6801
    Bayesian info crit = -10936.1956
[[Variables]]
    bkg_c:          0.03630504 +/- 9.4269e-04 (2.60%) (init = 0)
    bkg_b:         -0.05150031 +/- 0.00272084 (5.28%) (init = 0)
    bkg_a:          0.02285577 +/- 0.00109543 (4.79%) (init = 0)
    lz1_sigma:      0.03853490 +/- 0.00224206 (5.82%) (init = 0.05)
    lz1_center:     0.60596282 +/- 0.00101699 (0.17%) (init = 0.61)
    lz1_amplitude:  0.00121362 +/- 8.0862e-05 (6.66%) (init = 0.005)
    lz1_fwhm:       0.07706979 +/- 0.00448412 (5.82%) == '2.0000000*lz1_sigma'
    lz1_height:     0.01002487 +/- 3.1221e-04 (3.11%) == '0.3183099*lz1_amplitude/max(2.220446049250313e-16, lz1_sigma)'
    lz2_sigma:      0.03534226 +/- 3.5893e-04 (1.02%) (init = 0.05)
    lz2_center:     0.76784323 +/- 1.9002e-04 (0.02%) (init = 0.76)
    lz2_amplitude:  0.00738785 +/- 8.9378e-05 (1.21%) (init = 0.005)
    lz2_fwhm:       0.07068452 +/- 7.1786e-04 (1.02%) == '2.0000000*lz2_sigma'
    lz2_height:     0.06653864 +/- 3.6663e-04 (0.55%) == '0.3183099*lz2_amplitude/max(2.220446049250313e-16, lz2_sigma)'
    lz3_sigma:      0.03948780 +/- 0.00111507 (2.82%) (init = 0.05)
    lz3_center:     0.85427526 +/- 5.4206e-04 (0.06%) (init = 0.85)
    lz3_amplitude:  0.00317016 +/- 1.1244e-04 (3.55%) (init = 0.005)
    lz3_fwhm:       0.07897560 +/- 0.00223015 (2.82%) == '2.0000000*lz3_sigma'
    lz3_height:     0.02555459 +/- 3.9771e-04 (1.56%) == '0.3183099*lz3_amplitude/max(2.220446049250313e-16, lz3_sigma)'
    lz4_sigma:      0.02983045 +/- 0.00283845 (9.52%) (init = 0.05)
    lz4_center:     0.99544342 +/- 0.00142552 (0.14%) (init = 0.99)
    lz4_amplitude:  6.9114e-04 +/- 7.6016e-05 (11.00%) (init = 0.005)
    lz4_fwhm:       0.05966089 +/- 0.00567690 (9.52%) == '2.0000000*lz4_sigma'
    lz4_height:     0.00737492 +/- 3.6918e-04 (5.01%) == '0.3183099*lz4_amplitude/max(2.220446049250313e-16, lz4_sigma)'
    lz5_sigma:      0.06666333 +/- 0.00196152 (2.94%) (init = 0.05)
    lz5_center:     1.10162076 +/- 7.8293e-04 (0.07%) (init = 1.1)
    lz5_amplitude:  0.00522275 +/- 2.2587e-04 (4.32%) (init = 0.005)
    lz5_fwhm:       0.13332666 +/- 0.00392304 (2.94%) == '2.0000000*lz5_sigma'
    lz5_height:     0.02493807 +/- 4.7491e-04 (1.90%) == '0.3183099*lz5_amplitude/max(2.220446049250313e-16, lz5_sigma)'
    lz6_sigma:      0.11712113 +/- 0.00307555 (2.63%) (init = 0.05)
    lz6_center:     1.43220451 +/- 0.00102240 (0.07%) (init = 1.4)
    lz6_amplitude:  0.01215451 +/- 5.1928e-04 (4.27%) (init = 0.005)
    lz6_fwhm:       0.23424227 +/- 0.00615109 (2.63%) == '2.0000000*lz6_sigma'
    lz6_height:     0.03303334 +/- 6.2184e-04 (1.88%) == '0.3183099*lz6_amplitude/max(2.220446049250313e-16, lz6_sigma)'
    lz7_sigma:      0.02603963 +/- 0.00335175 (12.87%) (init = 0.05)
    lz7_center:     1.55545329 +/- 0.00152567 (0.10%) (init = 1.54)
    lz7_amplitude:  4.6978e-04 +/- 7.1036e-05 (15.12%) (init = 0.005)
    lz7_fwhm:       0.05207926 +/- 0.00670351 (12.87%) == '2.0000000*lz7_sigma'
    lz7_height:     0.00574266 +/- 3.8805e-04 (6.76%) == '0.3183099*lz7_amplitude/max(2.220446049250313e-16, lz7_sigma)'
    lz8_sigma:      0.11332337 +/- 0.00336106 (2.97%) (init = 0.05)
    lz8_center:     1.79132485 +/- 0.00117968 (0.07%) (init = 1.7)
    lz8_amplitude:  0.00700579 +/- 3.2606e-04 (4.65%) (init = 0.005)
    lz8_fwhm:       0.22664674 +/- 0.00672212 (2.97%) == '2.0000000*lz8_sigma'
    lz8_height:     0.01967830 +/- 4.2422e-04 (2.16%) == '0.3183099*lz8_amplitude/max(2.220446049250313e-16, lz8_sigma)'
[[Correlations]] (unreported correlations are < 0.500)
    C(bkg_b, bkg_a)                 = -0.993
    C(bkg_c, bkg_b)                 = -0.981
    C(bkg_c, bkg_a)                 =  0.966
    C(lz6_sigma, lz6_amplitude)     =  0.963
    C(lz8_sigma, lz8_amplitude)     =  0.935
    C(lz5_sigma, lz5_amplitude)     =  0.933
    C(bkg_b, lz6_amplitude)         = -0.907
    C(lz3_sigma, lz3_amplitude)     =  0.905
    <snip>

并显示了一个情节 在此处输入图像描述

这可能并不完美,但应该会给你一个很好的开始。

于 2019-07-31T16:27:16.747 回答
0

您可能想尝试 peak-o-mat ( http://qceha.net ),这是一个用 python 编写的曲线拟合软件。它可以使用类似于 lmfit 的语法编写脚本。尽管如此,用几下鼠标点击进行初始猜测比查看数​​据和猜测要快得多。看看 Matt 用 peak-o-mat 制作的合身:

在此处输入图像描述

注意:为了导入您的数据,必须按列排列,而不是按行排列。

于 2019-08-02T19:19:35.757 回答