0

我有一些关于特定感染流行率的数据,为每个国家/地区提供了 6 个不同年龄组。我正在尝试找到一个合适的分布,它可能适合使用 fitdistrplus 对 prev 进行建模。

流行变量的直方图显示它似乎不是单峰的,但 logit 或 log 转换表明存在一些偏斜。现在,由于起始值或我不知道的某事,我无法找到适合数据的分布。有人可以建议吗?

这是我的数据

prev=c( 0.4 ,0.4    ,0.3333 ,0.2273 ,0.2273 ,0.1818 ,0.0733 ,0.0807 ,0.2    ,0.2    ,0.2    ,0.1053 ,0.2083 ,0.1585 ,0.1017 ,0.1017 ,0.1017 ,0.1059 ,0.3902 ,0.3981 ,0.4103 ,0.4706 ,0.4706 ,0.4655 ,0.037  ,0.0432 ,0.0488 ,0.1538 ,0.1667 ,0.0556 ,0.1277 ,0.101  ,0.0641 ,0.034  ,0.0267 ,0.0463 ,0.0152 ,0.0277 ,0.0268 ,0.0211 ,0.0185 ,0.019  ,0.1818 ,0.2384 ,0.1442 ,0.1481 ,0.1111 ,0.1333 ,0.5018 ,0.2983 ,0.2649 ,0.2649 ,0.2649 ,0.2593 ,0.3442 ,0.2774 ,0.1269 ,0.1269 ,0.1269 ,0.1272 ,0.1708 ,0.136  ,0.048  ,0.048  ,0.048  ,0.0478 ,0.4261 ,0.303  ,0.1891 ,0.1891 ,0.1891 ,0.1891 ,0.12   ,0.0779 ,0.0306 ,0.0476 ,0.1    ,0.0862 ,0.1733 ,0.1386 ,0.0947 ,0.0822 ,0.0392 ,0  ,0.453  ,0.4287 ,0.3898 ,0.3756 ,0.3953 ,0.3776 ,0.3818 ,0.278  ,0.184  ,0.1529 ,0.1077 ,0.0769 ,0.2398 ,0.1421 ,0.1353 ,0.1269 ,0.1158 ,0.1228 ,0.1    ,0.1233 ,0.1162 ,0.1078 ,0.1238 ,0.0532 ,0.2636 ,0.1948 ,0.0767 ,0.0821 ,0.0661 ,0  ,0  ,0.0625 ,0.0635 ,0.0576 ,0.0455 ,0)
prev_log =c(,-0.916290731874155 ,-0.916290731874155 ,-1.09871229366844  ,-1.48148454812364  ,-1.48148454812364  ,-1.70484809723876  ,-2.61319467008953  ,-2.51701670370623  ,-1.6094379124341   ,-1.6094379124341   ,-1.6094379124341   ,-2.25094185984221  ,-1.56877593071521  ,-1.8420006856648   ,-2.28572797592762  ,-2.28572797592762  ,-2.28572797592762  ,-2.24526002637478  ,-0.941095850793126 ,-0.921052048975866 ,-0.890866679533997 ,-0.753746802688875 ,-0.753746802688875 ,-0.764643182265015 ,-3.29683736633791  ,-3.14191478373207  ,-3.02002496612304  ,-1.87210222191059  ,-1.79155948922539  ,-2.8895720777256   ,-2.05807151594364  ,-2.29263476214088  ,-2.74731091505551  ,-3.38139475436598  ,-3.62309171357593  ,-3.07261331788995  ,-4.18645985112991  ,-3.58632286578884  ,-3.61935339146533  ,-3.85848223850012  ,-3.98998454689786  ,-3.9633162998157   ,-1.70484809723876  ,-1.43380534379094  ,-1.93655405413129  ,-1.90986755770838  ,-2.19732458233655  ,-2.01515305179747  ,-0.689553645049815 ,-1.20965558746143  ,-1.32840288270411  ,-1.32840288270411  ,-1.32840288270411  ,-1.34976958643752  ,-1.0665323952047   ,-1.28229477110141  ,-2.0643559042618   ,-2.0643559042618   ,-2.0643559042618   ,-2.06199462807612  ,-1.76726199762767  ,-1.99510039324608  ,-3.03655426807425  ,-3.03655426807425  ,-3.03655426807425  ,-3.04072963948473  ,-0.853081218476271 ,-1.19402247347277  ,-1.66547930331773  ,-1.66547930331773  ,-1.66547930331773  ,-1.66547930331773  ,-2.12026353620009  ,-2.55232932610543  ,-3.4867552700238   ,-3.04492251774476  ,-2.30258509299405  ,-2.45108510131249  ,-1.75273108226058  ,-1.97616319222633  ,-2.3570412787901   ,-2.49859997692 ,-3.23907853218572  ,   ,-0.791863153499103 ,-0.846997905378206 ,-0.942121491908677 ,-0.979230531648029 ,-0.928110308679497 ,-0.973919844710791 ,-0.96285836769049  ,-1.2801341652915   ,-1.69281952137315  ,-1.87797116604712  ,-2.22840569481979  ,-2.56524940247054  ,-1.42795003638872  ,-1.95122424387908  ,-2.00026074380539  ,-2.0643559042618   ,-2.15589071384324  ,-2.0971982632691   ,-2.30258509299405  ,-2.09313486881184  ,-2.15244243456433  ,-2.22747762050724  ,-2.08908791873164  ,-2.93369688263454  ,-1.33332247635378  ,-1.6357818877737   ,-2.56785357060893  ,-2.49981726252375  ,-2.7165865321245   ,   ,   ,-2.77258872223978  ,-2.75671537308349  ,-2.85423271128029  ,-3.09004295302523  )

prev_logit= c(-0.405465108108164    ,-0.405465108108164 ,-0.693297184310321 ,-1.22362014408104  ,-1.22362014408104  ,-1.50419962375192  ,-2.53706927970004  ,-2.43287393559381  ,-1.38629436111989  ,-1.38629436111989  ,-1.38629436111989  ,-2.13967504741362  ,-1.33520318391046  ,-1.66943142031353  ,-2.17847678518065  ,-2.17847678518065  ,-2.17847678518065  ,-2.13332237313391  ,-0.446471606365144 ,-0.413388088547454 ,-0.362725333558318 ,-0.117735813499739 ,-0.117735813499739 ,-0.138219633747978 ,-3.2591354991539   ,-3.0977538879463   ,-2.96999403251747  ,-1.70510268121442  ,-1.60919793163141  ,-2.83236660395482  ,-1.92144963840068  ,-2.18616251763036  ,-2.68106426923659  ,-3.34680330959636  ,-3.59602879402624  ,-3.02520719549268  ,-4.17114314701801  ,-3.55823198562232  ,-3.59218772339256  ,-3.83715645178536  ,-3.97131128163224  ,-3.94413348039892  ,-1.50419962375192  ,-1.16147154828596  ,-1.78083547913187  ,-1.74958142777504  ,-2.07955404660204  ,-1.87209066895564  ,0.00720003110424186    ,-0.85540627073754  ,-1.02065414810202  ,-1.02065414810202  ,-1.02065414810202  ,-1.04960999247462  ,-0.644632980633109 ,-0.957395310832809 ,-1.92865072209642  ,-1.92865072209642  ,-1.92865072209642  ,-1.92594578361284  ,-1.57996809920715  ,-1.848917883068    ,-2.98736402388347  ,-2.98736402388347  ,-2.98736402388347  ,-2.99174945726301  ,-0.297781104608451 ,-0.833052605251155 ,-1.4558687662861   ,-1.4558687662861   ,-1.4558687662861   ,-1.4558687662861   ,-1.99243016469021  ,-2.47122772466839  ,-3.45567731445294  ,-2.99615235337533  ,-2.19722457733622  ,-2.36094155145952  ,-1.56241767553707  ,-1.82696688586421  ,-2.25755238028936  ,-2.4128241998986   ,-3.19908952396936  ,   ,-0.188556676938947 ,-0.287157092126485 ,-0.448152985209109 ,-0.508266441307169 ,-0.425087496976527 ,-0.499747538592836 ,-0.481915118406369 ,-0.954404025202189 ,-1.48947859735512  ,-1.71203463850249  ,-2.11445281474376  ,-2.48523169448451  ,-1.15377631396173  ,-1.79795650747586  ,-1.85488809078964  ,-1.92865072209642  ,-2.03281871625325  ,-1.96617800083069  ,-2.19722457733622  ,-1.96154444842424  ,-2.02891794827883  ,-2.11341266421927  ,-1.9569270151293   ,-2.87902948129223  ,-1.02734064673057  ,-1.4191173025572   ,-2.48805250040537  ,-2.41415043576666  ,-2.64820061925803  ,   ,   ,-2.70805020110221  ,-2.6911096159855   ,-2.79490724519548  ,-3.0434753172089   ,
group= c(1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6  ,1  ,2  ,3  ,4  ,5  ,6)
id= c(950   ,950    ,950    ,950    ,950    ,950    ,979    ,979    ,979    ,979    ,979    ,979    ,982    ,982    ,982    ,982    ,982    ,982    ,1008   ,1008   ,1008   ,1008   ,1008   ,1008   ,1151   ,1151   ,1151   ,1151   ,1151   ,1151   ,1166   ,1166   ,1166   ,1166   ,1166   ,1166   ,1199   ,1199   ,1199   ,1199   ,1199   ,1199   ,1244   ,1244   ,1244   ,1244   ,1244   ,1244   ,1267   ,1267   ,1267   ,1267   ,1267   ,1267   ,1277   ,1277   ,1277   ,1277   ,1277   ,1277   ,1286   ,1286   ,1286   ,1286   ,1286   ,1286   ,1292   ,1292   ,1292   ,1292   ,1292   ,1292   ,1306   ,1306   ,1306   ,1306   ,1306   ,1306   ,1323   ,1323   ,1323   ,1323   ,1323   ,1323   ,1367   ,1367   ,1367   ,1367   ,1367   ,1367   ,1399   ,1399   ,1399   ,1399   ,1399   ,1399   ,1438   ,1438   ,1438   ,1438   ,1438   ,1438   ,1447   ,1447   ,1447   ,1447   ,1447   ,1447   ,1488   ,1488   ,1488   ,1488   ,1488   ,1488   ,1521   ,1521   ,1521   ,1521   ,1521   ,1521)

如果这不起作用,我可以考虑使用样条曲线吗?或者可能是一些 GAM 模型,因为我有研究级别的数据,并且对于每个研究,我都有 6 个组的 prev。

plotdist(mydat$p_exact, histo = TRUE, demp = TRUE, breaks=40)
plotdist(mydat$p_log, histo = TRUE, demp = TRUE, breaks=40)
plotdist(mydat$p_logit, histo = TRUE, demp = TRUE, breaks=40)

fit_w  <- fitdist(mydat$prev, "weibull")
fit_g  <- fitdist(mydat$prev, "gamma")
fit_b <- fitdist(mydat$prev, "beta")
fit_ln <- fitdist(mydat$prev, "lnorm")

当我尝试一些凝视值或将选项添加lower=c(0,0)到 fitdist 时,我遇到了一些错误the function mle failed to estimate the parameters, with the error code 100

4

0 回答 0