0

首先,我是一个 R 新手。我正在尝试将密度图应用于我的数据中的各个组。使用 fitdistrplus,我为我的所有数据创建了一个分布密度图。

plot(my_data, pch=20)

plotdist(my_data$Capture_Rate, histo = TRUE, demp = TRUE)

fit_w <- fitdist(my_data$Capture_Rate, "weibull")
fit_g <- fitdist(my_data$Capture_Rate, "gamma")
fit_ln <- fitdist(my_data$Capture_Rate, "lnorm")

par(mfrow=c(2,2))
plot.legend <- c("Weibull", "lognormal", "gamma")
denscomp(list(fit_w, fit_ln, fit_g), legendtext = plot.legend)

在此处输入图像描述

在 ggplot 中使用 facet_grid,我为每个数据分组创建了一个直方图网格。

df_data <- data.frame(my_data)

cdat <- ddply(df_data, c("sYear", "Season"), summarise, Capture_Rate.mean=mean(Capture_Rate))

ggplot(df_data, aes(x=Capture_Rate, fill=sYear))+
  geom_histogram(binwidth = .025,
                 alpha = .5,
                 position = "identity")+
  #geom_density(alpha=.2, fill="#FF6666")+
  geom_vline(data=cdat, aes(xintercept=Capture_Rate.mean),
             color="red", linetype="dashed", size=1)+
  facet_grid(Season ~ sYear)

在此处输入图像描述

我正在寻找的是结合两个结果,在其中我得到分组网格中每个直方图的密度图。感谢您的帮助。

样本数据:

a <- dput(my_data)
structure(list(Schedule_Name = structure(c(1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "Actuals                                                                                             ", class = "factor"), 
    Sub_Fleet = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L), .Label = "38K", class = "factor"), sDate = structure(c(17664, 
    17665, 17666, 17667, 17668, 17669, 17670, 17672, 17674, 17675, 
    17676, 17677, 17678, 17679, 17680, 17681, 17682, 17683, 17684, 
    17685, 17686, 17687, 17688, 17689, 17690, 17691, 17692, 17693, 
    17694, 17696, 17697, 17698, 17699, 17700, 17701, 17702, 17703, 
    17704, 17705, 17706, 17707, 17708, 17710, 17711, 17712, 17713, 
    17714, 17715, 17716, 17717, 17718, 17719, 17720, 17721, 17722, 
    17723, 17724, 17725, 17728, 17729, 17730, 17731, 17732, 17733, 
    17734, 17735, 17736, 17737, 17738, 17739, 17740, 17741, 17742, 
    17743, 17744, 17745, 17746, 17747, 17748, 17749, 17750, 17751, 
    17753, 17754, 17755, 17758, 17759, 17761, 17762, 17763, 17764, 
    17765, 17766, 17767, 17768, 17769, 17770, 17771, 17772, 17773, 
    17774, 17775, 17776, 17777, 17778, 17779, 17781, 17782, 17783, 
    17784, 17785, 17786, 17787, 17788, 17789, 17790, 17791, 17792, 
    17793, 17794, 17795, 17796, 17797, 17798, 17799, 17800, 17801, 
    17802, 17803, 17804, 17805, 17806, 17807, 17808, 17809, 17810, 
    17811, 17812, 17813, 17814, 17815, 17816, 17817, 17818, 17819, 
    17820, 17821, 17822, 17823, 17824, 17825, 17826, 17827, 17828, 
    17829, 17830, 17831, 17832, 17833, 17834, 17835, 17836, 17837, 
    17838, 17839, 17840, 17841, 17842, 17843, 17844, 17845, 17846, 
    17847, 17848, 17849, 17850, 17851, 17852, 17853, 17854, 17855, 
    17856, 17857, 17858, 17859, 17860, 17861, 17862, 17863, 17864, 
    17865, 17866, 17867, 17868, 17869, 17870, 17871, 17872, 17873, 
    17874, 17875, 17876, 17877, 17878, 17879, 17880, 17881, 17882, 
    17883, 17884, 17885, 17886, 17887, 17888, 17889, 17890, 17891, 
    17892, 17893, 17894, 17895, 17896, 17897, 17898, 17899, 17900, 
    17901, 17902, 17903, 17904, 17905, 17906, 17907, 17908, 17909, 
    17910, 17911, 17912, 17913, 17914, 17915, 17916, 17917, 17918, 
    17919, 17920, 17921, 17922, 17923, 17924, 17925, 17926, 17927, 
    17928, 17929, 17930, 17931, 17932, 17933, 17934, 17935, 17936, 
    17937, 17938, 17939, 17940, 17941, 17942, 17943, 17944, 17945, 
    17946, 17947, 17948, 17949, 17950, 17951, 17952, 17953, 17954, 
    17955, 17956, 17957, 17958, 17959, 17960, 17961, 17962, 17963, 
    17964, 17965, 17966, 17967, 17968, 17969, 17970, 17971, 17972, 
    17973, 17974, 17975, 17976, 17977, 17978, 17979, 17980, 17981, 
    17982, 17983, 17984, 17985, 17986, 17987, 17988, 17989, 17990, 
    17991, 17992, 17993, 17994, 17995, 17996, 17997, 17998, 17999, 
    18000, 18001, 18002, 18003, 18004, 18005, 18006, 18007, 18008, 
    18009, 18010, 18011, 18012, 18013, 18014, 18015, 18016, 18017, 
    18018, 18019, 18020, 18021, 18022, 18023, 18024, 18025, 18026, 
    18027, 18028, 18029, 18030, 18031, 18032, 18033, 18034, 18035, 
    18036, 18037, 18038, 18039, 18040, 18041, 18042, 18043, 18044, 
    18045, 18046, 18047, 18048, 18049, 18050, 18051, 18052, 18053, 
    18054, 18055, 18056, 18057, 18058, 18059, 18060, 18061, 18062, 
    18063, 18064, 18065, 18066, 18067, 18068, 18069, 18070, 18071, 
    18072, 18073, 18074, 18075, 18076, 18077, 18078, 18079, 18080, 
    18081, 18082, 18083, 18084, 18085, 18086, 18087, 18088, 18089, 
    18090, 18091, 18092), class = "Date"), Active_Tails = c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 8L, 10L, 
    10L, 10L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 
    12L, 13L, 13L, 14L, 14L, 14L, 14L, 15L, 16L, 16L, 16L, 16L, 
    16L, 16L, 16L, 17L, 18L, 18L, 19L, 19L, 19L, 20L, 21L, 21L, 
    21L, 22L, 22L, 23L, 24L, 25L, 26L, 26L, 26L, 26L, 25L, 26L, 
    26L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 29L, 30L, 30L, 31L, 
    32L, 33L, 33L, 34L, 34L, 34L, 35L, 35L, 36L, 36L, 36L, 37L, 
    37L, 37L, 37L, 38L, 40L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 
    41L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 45L, 46L, 
    46L, 46L, 46L, 46L, 46L, 47L, 48L, 48L, 49L, 49L, 49L, 49L, 
    50L, 51L, 51L, 52L, 52L, 52L, 52L, 53L, 53L, 54L, 55L, 55L, 
    55L, 55L, 56L, 56L, 56L, 58L, 58L, 58L, 58L, 60L, 59L, 59L, 
    60L, 60L, 60L, 60L, 61L, 62L, 63L, 63L, 63L, 63L, 65L, 65L, 
    65L, 66L, 66L, 66L, 66L, 66L, 66L, 66L, 67L, 67L, 67L, 67L, 
    67L, 68L, 68L, 68L, 68L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 
    69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 69L, 
    69L, 69L, 69L, 69L, 69L, 69L, 69L, 70L, 70L, 70L, 69L, 70L, 
    70L, 71L, 71L, 70L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 
    71L, 71L, 70L, 70L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 
    71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 
    71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 
    71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 
    71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 
    71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 71L, 
    71L, 71L, 71L, 71L, 71L, 71L, 71L), MX_Credits = c(1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
    2L, 2L, 1L, 2L, 1L, 3L, 4L, 3L, 2L, 4L, 4L, 1L, 3L, 2L, 4L, 
    4L, 3L, 3L, 4L, 2L, 5L, 5L, 4L, 4L, 6L, 7L, 2L, 4L, 6L, 4L, 
    7L, 9L, 6L, 4L, 7L, 3L, 9L, 6L, 9L, 7L, 7L, 8L, 7L, 5L, 8L, 
    10L, 11L, 9L, 6L, 8L, 5L, 7L, 6L, 9L, 10L, 8L, 10L, 7L, 9L, 
    11L, 9L, 10L, 11L, 8L, 10L, 11L, 11L, 9L, 8L, 9L, 13L, 13L, 
    16L, 15L, 10L, 13L, 16L, 12L, 10L, 14L, 17L, 12L, 12L, 13L, 
    15L, 18L, 14L, 24L, 15L, 20L, 17L, 17L, 14L, 22L, 19L, 21L, 
    23L, 16L, 19L, 23L, 16L, 22L, 17L, 17L, 15L, 22L, 21L, 16L, 
    19L, 19L, 18L, 14L, 23L, 23L, 25L, 17L, 15L, 22L, 21L, 17L, 
    19L, 17L, 20L, 23L, 22L, 22L, 22L, 19L, 19L, 25L, 22L, 25L, 
    25L, 21L, 22L, 24L, 24L, 22L, 20L, 26L, 22L, 22L, 26L, 25L, 
    24L, 27L, 27L, 26L, 24L, 28L, 23L, 27L, 25L, 25L, 27L, 27L, 
    23L, 28L, 23L, 23L, 29L, 32L, 23L, 19L, 30L, 27L, 30L, 29L, 
    25L, 29L, 26L, 24L, 30L, 30L, 33L, 24L, 31L, 30L, 28L, 28L, 
    29L, 35L, 33L, 30L, 33L, 35L, 37L, 32L, 32L, 36L, 30L, 31L, 
    33L, 33L, 31L, 33L, 33L, 37L, 33L, 33L, 38L, 37L, 37L, 38L, 
    34L, 36L, 38L, 28L, 35L, 30L, 33L, 38L, 39L, 30L, 34L, 32L, 
    28L, 37L, 33L, 36L, 39L, 33L, 36L, 34L, 39L, 28L, 39L, 39L, 
    32L, 30L, 35L, 33L, 37L, 25L, 32L, 30L, 28L, 39L, 36L, 33L, 
    38L, 40L, 37L, 33L, 35L, 43L, 30L, 32L, 40L, 36L, 30L, 31L, 
    41L, 29L, 31L, 38L, 41L, 34L, 35L, 42L, 34L, 33L, 40L, 33L, 
    31L, 38L, 37L, 29L, 33L, 35L, 38L, 34L, 33L, 36L, 39L, 33L, 
    33L, 31L, 33L, 36L, 33L, 38L, 33L, 30L, 28L, 30L, 28L, 37L, 
    34L, 33L, 33L, 34L, 35L, 31L, 38L, 30L, 35L, 30L, 45L, 35L, 
    31L, 30L, 26L, 26L, 35L, 34L, 26L, 34L, 36L, 31L, 31L), Capture_Rate = c(1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 
    1, 1, 0.5, 1, 0.5, 1, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 0.5, 1, 
    0.33, 1, 1, 0.75, 0.5, 1, 1, 0.25, 0.6, 0.4, 0.8, 0.8, 0.6, 
    0.6, 0.8, 0.4, 1, 1, 0.67, 0.67, 1, 1, 0.25, 0.4, 0.6, 0.4, 
    0.64, 0.82, 0.55, 0.36, 0.64, 0.25, 0.75, 0.5, 0.75, 0.58, 
    0.58, 0.62, 0.54, 0.36, 0.57, 0.71, 0.79, 0.6, 0.38, 0.5, 
    0.31, 0.44, 0.38, 0.56, 0.63, 0.47, 0.56, 0.39, 0.47, 0.58, 
    0.47, 0.5, 0.52, 0.38, 0.48, 0.5, 0.5, 0.39, 0.33, 0.36, 
    0.5, 0.5, 0.62, 0.58, 0.4, 0.5, 0.62, 0.44, 0.37, 0.5, 0.61, 
    0.43, 0.43, 0.46, 0.52, 0.6, 0.47, 0.77, 0.47, 0.61, 0.52, 
    0.5, 0.41, 0.65, 0.54, 0.6, 0.64, 0.44, 0.53, 0.62, 0.43, 
    0.59, 0.46, 0.45, 0.38, 0.54, 0.51, 0.39, 0.46, 0.46, 0.44, 
    0.34, 0.56, 0.53, 0.58, 0.4, 0.35, 0.51, 0.49, 0.4, 0.44, 
    0.4, 0.44, 0.5, 0.48, 0.48, 0.48, 0.41, 0.41, 0.53, 0.46, 
    0.52, 0.51, 0.43, 0.45, 0.49, 0.48, 0.43, 0.39, 0.5, 0.42, 
    0.42, 0.5, 0.47, 0.45, 0.5, 0.49, 0.47, 0.44, 0.51, 0.41, 
    0.48, 0.45, 0.43, 0.47, 0.47, 0.4, 0.47, 0.39, 0.39, 0.48, 
    0.53, 0.38, 0.32, 0.49, 0.44, 0.48, 0.46, 0.4, 0.46, 0.4, 
    0.37, 0.46, 0.45, 0.5, 0.36, 0.47, 0.45, 0.42, 0.42, 0.43, 
    0.52, 0.49, 0.45, 0.49, 0.51, 0.54, 0.47, 0.47, 0.52, 0.43, 
    0.45, 0.48, 0.48, 0.45, 0.48, 0.48, 0.54, 0.48, 0.48, 0.55, 
    0.54, 0.54, 0.55, 0.49, 0.52, 0.55, 0.41, 0.51, 0.43, 0.48, 
    0.55, 0.57, 0.43, 0.49, 0.46, 0.4, 0.53, 0.48, 0.51, 0.56, 
    0.46, 0.51, 0.49, 0.55, 0.39, 0.55, 0.55, 0.45, 0.42, 0.49, 
    0.46, 0.52, 0.35, 0.46, 0.43, 0.39, 0.55, 0.51, 0.46, 0.54, 
    0.56, 0.52, 0.46, 0.49, 0.61, 0.42, 0.45, 0.56, 0.51, 0.42, 
    0.44, 0.58, 0.41, 0.44, 0.54, 0.58, 0.48, 0.49, 0.59, 0.48, 
    0.46, 0.56, 0.46, 0.44, 0.54, 0.52, 0.41, 0.46, 0.49, 0.54, 
    0.48, 0.46, 0.51, 0.55, 0.46, 0.46, 0.44, 0.46, 0.51, 0.46, 
    0.54, 0.46, 0.42, 0.39, 0.42, 0.39, 0.52, 0.48, 0.46, 0.46, 
    0.48, 0.49, 0.44, 0.54, 0.42, 0.49, 0.42, 0.63, 0.49, 0.44, 
    0.42, 0.37, 0.37, 0.49, 0.48, 0.37, 0.48, 0.51, 0.44, 0.44
    ), Total_SPR_IML = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L), Capture_Rate_w_SPR_IML = c(1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 0.5, 
    1, 0.5, 1, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 0.5, 1, 0.33, 1, 1, 
    0.75, 0.5, 1, 1, 0.25, 0.6, 0.4, 0.8, 0.8, 0.6, 0.6, 0.8, 
    0.4, 1, 1, 0.67, 0.67, 1, 1, 0.25, 0.4, 0.6, 0.4, 0.64, 0.82, 
    0.55, 0.36, 0.64, 0.25, 0.75, 0.5, 0.75, 0.58, 0.58, 0.62, 
    0.54, 0.36, 0.57, 0.71, 0.79, 0.6, 0.38, 0.5, 0.31, 0.44, 
    0.38, 0.56, 0.63, 0.47, 0.56, 0.39, 0.47, 0.58, 0.47, 0.5, 
    0.52, 0.38, 0.48, 0.5, 0.5, 0.39, 0.33, 0.36, 0.5, 0.5, 0.62, 
    0.58, 0.4, 0.5, 0.62, 0.44, 0.37, 0.5, 0.61, 0.43, 0.43, 
    0.46, 0.52, 0.6, 0.47, 0.77, 0.47, 0.61, 0.52, 0.5, 0.41, 
    0.65, 0.54, 0.6, 0.64, 0.44, 0.53, 0.62, 0.43, 0.59, 0.46, 
    0.45, 0.38, 0.54, 0.51, 0.39, 0.46, 0.46, 0.44, 0.34, 0.56, 
    0.53, 0.58, 0.4, 0.35, 0.51, 0.49, 0.4, 0.44, 0.4, 0.44, 
    0.5, 0.48, 0.48, 0.48, 0.41, 0.41, 0.53, 0.46, 0.52, 0.51, 
    0.43, 0.45, 0.49, 0.48, 0.43, 0.39, 0.5, 0.42, 0.42, 0.5, 
    0.47, 0.45, 0.5, 0.49, 0.47, 0.44, 0.51, 0.41, 0.48, 0.45, 
    0.43, 0.47, 0.47, 0.4, 0.47, 0.39, 0.39, 0.48, 0.53, 0.38, 
    0.32, 0.49, 0.44, 0.48, 0.46, 0.4, 0.46, 0.4, 0.37, 0.46, 
    0.45, 0.5, 0.36, 0.47, 0.45, 0.42, 0.42, 0.43, 0.52, 0.49, 
    0.45, 0.49, 0.51, 0.54, 0.47, 0.47, 0.52, 0.43, 0.45, 0.48, 
    0.48, 0.45, 0.48, 0.48, 0.54, 0.48, 0.48, 0.55, 0.54, 0.54, 
    0.55, 0.49, 0.52, 0.55, 0.41, 0.51, 0.43, 0.48, 0.55, 0.57, 
    0.43, 0.49, 0.46, 0.4, 0.53, 0.48, 0.51, 0.56, 0.46, 0.51, 
    0.49, 0.55, 0.39, 0.55, 0.55, 0.45, 0.42, 0.49, 0.46, 0.52, 
    0.35, 0.46, 0.43, 0.39, 0.55, 0.51, 0.46, 0.54, 0.56, 0.52, 
    0.46, 0.49, 0.61, 0.42, 0.45, 0.56, 0.51, 0.42, 0.44, 0.58, 
    0.41, 0.44, 0.54, 0.58, 0.48, 0.49, 0.59, 0.48, 0.46, 0.56, 
    0.46, 0.44, 0.54, 0.52, 0.41, 0.46, 0.49, 0.54, 0.48, 0.46, 
    0.51, 0.55, 0.46, 0.46, 0.44, 0.46, 0.51, 0.46, 0.54, 0.46, 
    0.42, 0.39, 0.42, 0.39, 0.52, 0.48, 0.46, 0.46, 0.48, 0.49, 
    0.44, 0.54, 0.42, 0.49, 0.42, 0.63, 0.49, 0.44, 0.42, 0.37, 
    0.37, 0.49, 0.48, 0.37, 0.48, 0.51, 0.44, 0.44), sYear = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("2018 -", 
    "2019 -"), class = "factor"), sYear_Month = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 
    9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
    9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
    10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
    11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
    11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 
    12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
    12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
    12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
    13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
    13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 
    14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
    14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
    14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
    15L, 15L, 15L, 15L, 15L, 15L, 15L), .Label = c("2018-05", 
    "2018-06", "2018-07", "2018-08", "2018-09", "2018-10", "2018-11", 
    "2018-12", "2019-01", "2019-02", "2019-03", "2019-04", "2019-05", 
    "2019-06", "2019-07"), class = "factor"), Season = structure(c(3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("0.Winter 1H", 
    "1.Winter 2H", "2.Spring", "3.Summer", "4.Fall"), class = "factor"), 
    Year_Season = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L), .Label = c("2018-0.Winter 1H", "2018-2.Spring", 
    "2018-3.Summer", "2018-4.Fall", "2019-1.Winter 2H", "2019-2.Spring", 
    "2019-3.Summer"), class = "factor")), row.names = c(NA, 418L
), class = "data.frame")
4

1 回答 1

2

因此,经验密度的解决方案将比理论分布稍微容易一些。首先,让我们设置一些虚拟数据,因为我们没有您的任何数据可供使用。

set.seed(123)
# Setup some facets
idx <- expand.grid(c("A", "B"), c("C", "D"))

# For each facet, generate some numbers
df <- apply(idx, 1, function(x){
  data.frame(row = x[[1]],
             col = x[[2]],
             # chose 10 as mean, since Weibull can't be negative
             x = rnorm(100, 10))
})
df <- do.call(rbind, df)

现在对于经验案例,我们可以简单地采用每个方面的密度。我们可以这样做,因为 ggplot 已将核密度估计作为统计函数包含在内。

ggplot(df, aes(x)) +
  geom_histogram(binwidth = 0.1) +
  # To line up the histogram with KDE, we multiply y-values by binwidth
  geom_line(aes(y = ..count..*0.1, colour = "empirical"), stat = "density") +
  facet_grid(row ~ col)

看起来像这样:

在此处输入图像描述

因为我们没有任何理论密度的 ggplot 统计函数——至少不是特定于面板的函数——我们必须在单独的 data.frame 中预先计算理论分布的 xy 坐标:

# Loop over facets
dists <- apply(idx, 1, function(i){
  # Grab data belonging to facet
  dat <- df$x[df$row == i[[1]] & df$col == i[[2]]]

  # Setup x-values
  xseq <- seq(min(dat), max(dat), length.out = 100)

  # Specify distributions of interest
  dists <- c("weibull", "lnorm", "gamma")

  # Loop over distributions
  fits <- lapply(setNames(dists, dists), function(dist) {

    # Estimate parameters
    ests <- fitdist(dat, dist)$estimate

    # Get y-values
    y <- do.call(paste0("d", dist), c(list(x = xseq), as.list(ests)))

    # Multiplied by length(dat) to match absolute counts
    y * length(dat)
  })

  # Format everything neatly in a data.frame
  out <- lapply(dists, function(j) {
    data.frame(row = i[[1]],
               col = i[[2]],
               x = xseq,
               y = fits[[j]],
               distr = j)
  })

  # Combine all distributions
  do.call(rbind, out)
})

# Combine all facets
dists <- do.call(rbind, dists)

现在我们已经完成了这项繁琐的工作,我们终于可以绘制它了:

ggplot(df, aes(x)) +
  geom_histogram(binwidth = 0.1) +
  geom_line(data = dists, aes(y = y * 0.1, colour = distr)) +
  facet_grid(row ~ col)

在此处输入图像描述

根据需要调整您自己的数据。祝你好运!

编辑:现在有示例数据

假设df是您发布dput()输出的 data.frame。我已经包含了一个条件,它检查构面数据的长度是否大于 2 以及方差是否非零,以便跳过我们无论如何都无法做出任何估计的数据。此外,我已将变量名称转换为与您在 data.frame 中命名它们的方式兼容。

idx <- expand.grid(levels(df$Season), levels(df$sYear))

# Loop over facets
dists <- apply(idx, 1, function(i){
  dat <- df$Capture_Rate[df$Season == i[[1]] & df$sYear == i[[2]]]
  print(length(dat))
  if (length(dat) < 2 | var(dat) == 0) {
    return(NULL)
  }
  xseq <- seq(min(dat), max(dat), length.out = 100)
  dists <- c("weibull", "lnorm", "gamma")
  fits <- lapply(setNames(dists, dists), function(dist) {
    ests <- fitdist(dat, dist)$estimate
    y <- do.call(paste0("d", dist), c(list(x = xseq), as.list(ests)))
    y * length(dat)
  })
  out <- lapply(dists, function(j) {
    data.frame(Season = i[[1]],
               sYear = i[[2]],
               x = xseq,
               y = fits[[j]],
               distr = j)
  })
  do.call(rbind, out)
})
dists <- do.call(rbind, dists)

ggplot(df, aes(x=Capture_Rate, fill=sYear))+
  geom_histogram(binwidth = .025,
                 alpha = .5,
                 position = "identity") +
  geom_line(data = dists, aes(x, y * .025, colour = distr), inherit.aes = FALSE) +
  facet_grid(Season ~ sYear)

在此处输入图像描述

于 2019-07-25T19:20:49.267 回答