我希望我能给你一个更简单的答案,但可惜我没有。但是,我通过制作新的统计数据和预定义的休息时间,找到了解决您的问题的一个非常老套的方法。免责声明:我自己不使用ggtern,所以我不太了解具体情况。一般来说,问题似乎是密度是按组计算的,并且密度的积分通常设置为 1。我们可以通过添加一个新的统计数据来解决这个问题。
解决方案看起来非常简单:将计算出的密度乘以组中数据点的数量,以获得按比例缩放以反映组大小的密度。唯一的缺点是我们必须更改bins = 10
按组计算的 ,以breaks = seq(start, end, by = somenumber)
使轮廓具有绝对中断而不是相对中断。
然而, ggtern 是一个相当复杂的包,它有自己的特点,很难编写一个新的 stat 函数来工作。存在一个带有“已批准统计信息”的列表,ggtern 将删除任何未经其批准的图层。
ggtern:::.approvedstat
identity confidence density_tern smooth_tern
"StatIdentity" "StatConfidenceTern" "StatDensityTern" "StatSmoothTern"
sum unique interpolate_tern mean_ellipse
"StatSum" "StatUnique" "StatInterpolateTern" "StatMeanEllipse"
hex_tern tri_tern
"StatHexTern" "StatTriTern"
因此,首要任务是将我们自己的 stat 条目(我们将调用它StatDensityTern2
)添加到已批准的 stat 列表中,但由于这.approvedstat
是在包命名空间中,所以我们必须有点hacky才能做到这一点:
approveupdate <- c(ggtern:::.approvedstat, "density_tern2" = "StatDensityTern2")
assignInNamespace(".approvedstat", approveupdate, pos = "package:ggtern")
现在我们可以编写自己的StatDensityTern2
,它继承自 的功能StatDensityTern
,并在计算组的方式上进行小幅更新。在编写这个新的统计数据时,我们需要注意加载必要的包并正确引用内部函数。我们将在很大程度上从现有的 中复制粘贴,但在将数据传递给轮廓函数之前StatDensityTern$compute_group
进行小幅调整以更改z = as.vector(dens$z)
为。z = as.vector(dens$z) * nrow(data)
library(compositions)
library(rlang)
StatDensityTern2 <-
ggproto(
"StatDensityTern2",
StatDensityTern,
compute_group = function(
self, data, scales, na.rm = FALSE, n = 100, h = NULL,
bdl = 0, bdl.val = NA, contour = TRUE, base = "ilr", expand = 0.5,
weight = NULL, bins = NULL, binwidth = NULL, breaks = NULL
) {
if (!c(base) %in% c("identity", "ilr"))
stop("base must be either identity or ilr", call. = FALSE)
raes = self$required_aes
data[raes] = suppressWarnings(compositions::acomp(data[raes]))
data[raes][data[raes] <= bdl] = bdl.val[1]
data = remove_missing(data, vars = self$required_aes, na.rm = na.rm,
name = "StatDensityTern", finite = TRUE)
if (ggplot2:::empty(data))
return(data.frame())
coord = coord_tern()
f = get(base, mode = "function")
fInv = get(sprintf("%sInv", base), mode = "function")
if (base == "identity")
data = tlr2xy(data, coord, inverse = FALSE, scale = TRUE)
h = h %||% ggtern:::estimateBandwidth(base, data[which(colnames(data) %in%
raes)])
if (length(h) != 2)
h = rep(h[1], 2)
if (base != "identity" && diff(h) != 0)
warning("bandwidth 'h' has different x and y bandwiths for 'ilr', this may (probably will) introduce permutational artifacts depending on the ordering",
call. = FALSE)
data[raes[1:2]] = suppressWarnings(f(as.matrix(data[which(colnames(data) %in%
raes)])))
expand = if (length(expand) != 2)
rep(expand[1], 2)
else expand
rngxy = range(c(data$x, data$y))
rngx = scales:::expand_range(switch(base, identity = coord$limits$x,
rngxy), expand[1])
rngy = scales:::expand_range(switch(base, identity = coord$limits$y,
rngxy), expand[2])
dens = ggtern:::kde2d.weighted(data$x, data$y, h = h, n = n, lims = c(rngx,
rngy), w = data$weight)
# Here be relevant changes ------------------------------------------------
df = data.frame(expand.grid(x = dens$x, y = dens$y),
z = as.vector(dens$z) * nrow(data),
group = data$group[1])
# Here end relevant changes -----------------------------------------------
if (contour) {
df = StatContour$compute_panel(df, scales, bins = bins,
binwidth = binwidth, breaks = breaks)
}
else {
names(df) <- c("x", "y", "density", "group")
df$level <- 1
df$piece <- 1
}
if (base == "identity")
df = tlr2xy(df, coord, inverse = TRUE, scale = TRUE)
df[raes] = suppressWarnings(fInv(as.matrix(df[which(colnames(df) %in%
raes)])))
df
}
)
现在我们已经编写了一个新的 stat 并自己批准了该 stat,我们可以通过以下方式使用它:
set.seed(1234)
# example data
df <- data.frame(X = c(runif(150, 0.7, 1),runif(50, 0, 0.3)),
Y = c(runif(150, 0, 0.3),runif(50, 0, 0.3)),
Z = c(runif(150, 0, 0.5),runif(50, 0.5, 1)),
D = c(rep("A", 150), rep("B", 50)))
ggtern(df, aes(x = X, y = Y, z = Z, color = D)) +
geom_polygon(aes(alpha = ..level.., fill = D),
stat = "DensityTern2",
breaks = seq(10, 150, by = 10),
color = "grey") +
geom_point(alpha = 0.5) +
scale_colour_manual(values = c("tomato3", "turquoise4"))
这给了我以下情节:
希望你发现这很有用!