22

如何将不可约分数与正则表达式匹配?

例如,23/25、3/4、5/2、100/101 等。

首先,我对正则表达式中的 gcd 算法实现一无所知。

为所有回答“您使用错误工具”的人更新:

是的,伙计们,我意识到正则表达式通常用于什么。没关系。但是这个问题很奇怪是它的重点。

更新 2:这个想法是找到一个在以下情况下可能有用的正则表达式:

$> echo "1/2" | grep -P regex
1/2
$> echo "2/4" | grep -P regex

因此,正则表达式应该只是一个字符串,而不使用任何脚本和变量。只有正则表达式。

实际上,我已经知道一些匹配一元数系统中可约分数的正则表达式。

$> echo "11/1111" | grep -P '^1/1+$|(11+)+\1+/\1+$'
11/1111

所以问题是在正则表达式中从十进制转换为一元系统,但我不知道如何。

4

4 回答 4

32

更新

由于张贴者请求了一个与“36/270”之类的字符串匹配的正则表达式,但表示它的易读性并不重要,因此该正则表达式是:

my $reducible_rx = qr{^(\d+)/(\d+)$(?(?{(1x$1."/".1x$2)=~m{^(?|1+/(1)|(11+)\1*/\1+)$}})|^)};

但是,如果像我一样,你认为一个难以辨认的正则表达式是绝对不可接受的,你会写得更清楚:

my $reducible_rx = qr{
  # first match a fraction:
    ^ ( \d+ ) / ( \d+ ) $
  # now for the hard part:
    (?(?{ ( 1 x $1 . "/" . 1 x $2 ) =~ m{
                ^
                (?|    1+      / (1)  # trivial case: GCD=1
                  |  (11+) \1* / \1+  # find the GCD
                )
                 $
            }x
        })
          # more portable version of (*PASS)
     | ^  # more portable version of (*FAIL)
     )
}x;

您可以通过将与一元版本匹配的版本与与十进制版本匹配的版本分开来提高可维护性,如下所示:

# this one assumes unary notation
my $unary_rx = qr{
    ^ 
    (?|   1+       / (1)
      | (11+)  \1* / \1+ 
    ) 
    $
}x;

# this one assumes decimal notation and converts internally
my $decimal_rx = qr{
  # first match a fraction:
    ^ ( \d+ ) / ( \d+ ) $ 
  # now for the hard part:
    (?(?{( 1 x $1 . "/" . 1 x $2 ) =~ $unary_rx})
          # more portable version of (*PASS)
     | ^  # more portable version of (*FAIL) 
     )
}x;

把它分成两个命名的正则表达式不是更容易吗?现在将$reducible_rx与 相同$decimal_rx,但一元版本是它自己的东西。我就是这样做的,但是最初的发布者想要一个正则表达式,所以你必须插入嵌套的正则表达式,正如我在上面第一次介绍的那样。

无论哪种方式,您都可以使用以下方法插入下面的测试工具:

    if ($frac =~ $reducible_rx) {
        cmp_ok($frac, "ne", reduce($i, $j), "$i/$j is $test");
    } else {
        cmp_ok($frac, "eq", reduce($i, $j), "$i/$j is $test");
    }

你会看到它是一个正确的正则表达式,它通过了所有的测试,而且使用了一个正则表达式,因此现在已经通过了原始问题的所有要求,我声明 Qᴜᴏᴅ ᴇʀᴀᴛ ᴅᴇᴍᴏɴsᴛʀᴀɴᴅᴜᴍ:“退出,做的够多了。”

不客气。


答案是将正则表达式^(?|1+/(1)|(11+)\1*/\1+)$与分数从十进制转换为一元符号后进行匹配,此时将在$1匹配中找到最大公因数;否则它们是互质的。如果您使用的是 Perl 5.14 或更高版本,您甚至可以一步完成:

use 5.014;
my $reg  = qr{^(?|1+/(1)|(11+)\1*/\1+)$};
my $frac = "36/270";  # for example
if ($frac =~ s/(\d+)/1 x $1/reg =~ /$reg/) { 
    say "$frac can be reduced by ", length $1;
} else {
    say "$frac is irreducible";
}

这将正确报告:

36/270 can be reduced by 18

(当然,减 1 意味着不再有分母。)

如果你想和你的读者有一点双关语的乐趣,你甚至可以这样做:

use 5.014;
my $regex = qr{^(?|1+/(1)|(11+)\1*/\1+)$};
my $frac  = "36/270";  # for example
if ($frac =~ s/(\d+)/"1 x $1"/regex =~ /$regex/) {
    say "$frac can be reduced by ", length $1;
} else {
    say "$frac is irreducible";
}

这是演示如何执行此操作的代码。此外,它构建了一个测试套件,该套件使用所有(正)分子和分母(默认为 30)来测试其算法。要在测试工具下运行它,请将其放入名为coprimes的文件中并执行以下操作:

$ perl -MTest::Harness -e 'runtests("coprimes")'
coprimes .. ok       
All tests successful.
Files=1, Tests=900,  1 wallclock secs ( 0.13 usr  0.02 sys +  0.33 cusr  0.02 csys =  0.50 CPU)
Result: PASS

以下是在没有测试工具的情况下运行时的输出示例:

$ perl coprimes 10
1..100
ok 1 - 1/1 is 1
ok 2 - 1/2 is 1/2
ok 3 - 1/3 is 1/3
ok 4 - 1/4 is 1/4
ok 5 - 1/5 is 1/5
ok 6 - 1/6 is 1/6
ok 7 - 1/7 is 1/7
ok 8 - 1/8 is 1/8
ok 9 - 1/9 is 1/9
ok 10 - 1/10 is 1/10
ok 11 - 2/1 is 2
ok 12 - 2/2 is 1
ok 13 - 2/3 is 2/3
ok 14 - 2/4 is 1/2
ok 15 - 2/5 is 2/5
ok 16 - 2/6 is 1/3
ok 17 - 2/7 is 2/7
ok 18 - 2/8 is 1/4
ok 19 - 2/9 is 2/9
ok 20 - 2/10 is 1/5
ok 21 - 3/1 is 3
ok 22 - 3/2 is 3/2
ok 23 - 3/3 is 1
ok 24 - 3/4 is 3/4
ok 25 - 3/5 is 3/5
ok 26 - 3/6 is 1/2
ok 27 - 3/7 is 3/7
ok 28 - 3/8 is 3/8
ok 29 - 3/9 is 1/3
ok 30 - 3/10 is 3/10
ok 31 - 4/1 is 4
ok 32 - 4/2 is 2
ok 33 - 4/3 is 4/3
ok 34 - 4/4 is 1
ok 35 - 4/5 is 4/5
ok 36 - 4/6 is 2/3
ok 37 - 4/7 is 4/7
ok 38 - 4/8 is 1/2
ok 39 - 4/9 is 4/9
ok 40 - 4/10 is 2/5
ok 41 - 5/1 is 5
ok 42 - 5/2 is 5/2
ok 43 - 5/3 is 5/3
ok 44 - 5/4 is 5/4
ok 45 - 5/5 is 1
ok 46 - 5/6 is 5/6
ok 47 - 5/7 is 5/7
ok 48 - 5/8 is 5/8
ok 49 - 5/9 is 5/9
ok 50 - 5/10 is 1/2
ok 51 - 6/1 is 6
ok 52 - 6/2 is 3
ok 53 - 6/3 is 2
ok 54 - 6/4 is 3/2
ok 55 - 6/5 is 6/5
ok 56 - 6/6 is 1
ok 57 - 6/7 is 6/7
ok 58 - 6/8 is 3/4
ok 59 - 6/9 is 2/3
ok 60 - 6/10 is 3/5
ok 61 - 7/1 is 7
ok 62 - 7/2 is 7/2
ok 63 - 7/3 is 7/3
ok 64 - 7/4 is 7/4
ok 65 - 7/5 is 7/5
ok 66 - 7/6 is 7/6
ok 67 - 7/7 is 1
ok 68 - 7/8 is 7/8
ok 69 - 7/9 is 7/9
ok 70 - 7/10 is 7/10
ok 71 - 8/1 is 8
ok 72 - 8/2 is 4
ok 73 - 8/3 is 8/3
ok 74 - 8/4 is 2
ok 75 - 8/5 is 8/5
ok 76 - 8/6 is 4/3
ok 77 - 8/7 is 8/7
ok 78 - 8/8 is 1
ok 79 - 8/9 is 8/9
ok 80 - 8/10 is 4/5
ok 81 - 9/1 is 9
ok 82 - 9/2 is 9/2
ok 83 - 9/3 is 3
ok 84 - 9/4 is 9/4
ok 85 - 9/5 is 9/5
ok 86 - 9/6 is 3/2
ok 87 - 9/7 is 9/7
ok 88 - 9/8 is 9/8
ok 89 - 9/9 is 1
ok 90 - 9/10 is 9/10
ok 91 - 10/1 is 10
ok 92 - 10/2 is 5
ok 93 - 10/3 is 10/3
ok 94 - 10/4 is 5/2
ok 95 - 10/5 is 2
ok 96 - 10/6 is 5/3
ok 97 - 10/7 is 10/7
ok 98 - 10/8 is 5/4
ok 99 - 10/9 is 10/9
ok 100 - 10/10 is 1

这是程序:

#!/usr/bin/env perl
#
# coprimes - test suite to use unary coprimality algorithm
# 
# Tom Christiansen <tchrist@perl.com>
# Sun Apr 17 12:18:19 MDT 2011

use strict;
use warnings;

my $DEFAULT = 2*3*5;
my $max = @ARGV ? shift : $DEFAULT;

use Test::More;
plan tests => $max ** 2;

my $rx = qr{
    ^
    (?|   1+       / (1)
      | (11+)  \1* / \1+
    )
    $
}x;

for my $i ( 1 .. $max ) {
    for my $j ( 1 .. $max ) {
        my $test;
        if (((1 x $i) . "/" . (1 x $j)) =~ /$rx/) {
            my $cf = length($1);
            $test = $i / $cf;
            $test .= "/" . $j/$cf unless $j/$cf == 1;
        } else {
            $test = "$i/$j";
        }
        cmp_ok($test, "eq", reduce($i, $j), "$i/$j is $test");
    }
}

sub reduce {
    my ($a, $b) = @_;
    use Math::BigRat;
    my $f = new Math::BigRat "$a/$b";
    return "$f";
}
于 2011-04-17T18:16:34.247 回答
13
于 2011-04-22T03:33:39.777 回答
3

如果你用一元写数字,并使用“:”作为除号,我认为这匹配可约分数:

/^1+:1$|^(11+):\1$|^(11+?)\2+:\2\2+$/

然后,您可以使用 !~ 查找不匹配的字符串。

基于此: http: //montreal.pm.org/tech/neil_kandalgaonkar.shtml

于 2011-04-15T16:48:41.813 回答
0

你可以知道,一个以 (0,5) 结尾的数字可以被 (5) 整除,或者以 (2,4,6,8,0) 结尾的数字可以被 2 整除。

对于 3,4,6,7,8,9 作为除数,我不认为有可能,对于任意除数也不行。

我想您知道确定可被 3 整除的方法 - 构建必须可被 3 整除的递归交叉和,以使数字可整除。因此,您可以从数字中消除所有 3、6 和 9,以及 0。对于任意数字,您可以这样处理:

  • 删除每个 0369
  • 将 47 更改为 1,(因为 4%3 和 7%3 = 1)
  • 将58改为2,原因见上
  • 每2到11换一次
  • 将每组 111 更改为空。

如果结果为空,则该数字可以被 3 整除:

echo ${RANDOM}${RANDOM}${RANDOM} | sed 's/[0369]//g;s/[47]/1/g;s/[58]/2/g;s/2/11/g;s/1\{3\}//g'

类似的方法可能适用于 9,您有类似的规则。但是对于任意除数的一般方法?

于 2011-04-15T19:21:43.370 回答