1

我正在评估回归问题的 keras 和 tensorflow 联合模型性能。性能基本上是两者的MSE。唯一的区别是: 1. 数据集的拆分方式。2.损失函数:

# keras model loss function
    def loss_fn():
        return tf.keras.losses.MeanSquaredError()  
# Federated model loss function 
    def loss_fn_Federated(y_true, y_pred):
        return tf.reduce_mean(tf.keras.losses.MSE(y_true, y_pred))

请帮助我改进联合模型。


tf.compat.v1.enable_v2_behavior()

train_perc = 0.8
Norm_Input  = True
Norm_Output = True
Input_str  = ['latitude', 'longitude']
if Norm_Output:
    Output_str = ['BeamRSRP_max_Normazlied']
else: 
    Output_str = ['BeamRSRP_max']

Final_Tag = 'Tag4' # here just decide which tagging method do you want to use
Num_Clients = 2 # cannot be less than one
Num_Cons_Sample_Client = 20 # cannot be less than one
max_thr_all = 1000000000

learn_rate = .01
Val_Train_Split = 0.8
SNN_epoch = 50
SNN_batch_size = 1100
shuffle_buffer = 200
SNN_Layers      = [10,100,100,100,100,10] # layers Dense
SNN_epsilon =0.1
SNN_decay = 0.01
datetime

Sim_Feature_Name = "-All-"
add_path_name = "Norm"+str(Norm_Output*1) +Sim_Feature_Name 
tosave_Path = add_path_name+str(datetime.datetime.now().hour) + '-'+str(datetime.datetime.now().minute)+'-' + str(datetime.datetime.now().second)+'/'



Data_2018 = False
if Data_2018:
    tmp_removed = ["gpsTime","UEC/CSI/CSI_rs_ssb_idx","UEC/CSI/CSI_rs_ssb_rsrp","TX/CSI_RX/Beam RSRP dBm","TX/CSI_RX/Channel Quality Indicator"]
    TobeRemoved_Array = ["gpsTime_float","core","ssbRSRP_max","RX/PBCH_Rx/Cell id","ssbidx_max","TX/CSI_RX/Precoding Matrix Indicator","CQI_max","UEC/UEC/L1_RX_throughput_mbps","BeamRSRP_max","UEC/PBCH/PBCH_SINR","BeamRSRP_max_Normazlied","log","is_training"]
else:
    tmp_removed = ["gpsTime","TX/CSI_RX/Beam RSRP dBm","nmea_raw","core_y"]
    TobeRemoved_Array = ['TX/CSI_RX/Channel Quality Indicator', 'core', 'epoch', 'TX/CSI_RX/Efficiency', 'TX/CSI_RX/Estimated Freq Error', 'TX/CSI_RX/Estimated Time Error', 'TX/CSI_RX/Precoding Matrix Indicator', 'TX/CSI_RX/Rank Indicator', 'log', 'BeamRSRP_max', 'CQI_max', 'gpsTime_float', 'BeamRSRP_max_Normazlied', 'is_training']

if not os.path.isdir(tosave_Path):
    os.makedirs(tosave_Path)

# Load simulation data.
##############################################
dir_name = 'pickle-data/'
file_name = 'all_logs_april_2019.pickle'
files = os.listdir('pickle-data/')
dataframe = Import_Pickle.Import_v1(dir_name,file_name,Data_2018) # choose False to use 2019 data
# Just to reduce the processing
ave = dataframe.core.min() + max_thr_all
#df2 = dataframe.drop(dataframe[dataframe.core < ave].index)
df2 = dataframe[dataframe.core < ave]
df = Import_Pickle.PreProcessing_v2019(df2,Norm_Input,tmp_removed)
train_df,test_df,X_traindf,X_testdf,Y_traindf,Y_testdf,XY_traindf,XY_testdf = Import_Pickle.Splitting_Train_Test(df,train_perc,Norm_Output,TobeRemoved_Array)

########## splitting for clients ############  
def Tag_per_day(train_df_loc,TagNum):
    train_df_loc['log2'] =  train_df_loc['log'].apply(lambda x: x.replace("_",""))
    tag_Index = train_df_loc.log2.apply(lambda x: x.index("201"))
    tag_Index2 = tag_Index.values[1]
    tag_date =train_df_loc.log2.apply(lambda x: x[tag_Index2:tag_Index2+8])
    train_df_loc.loc[:,'Tag'+str(TagNum)] = pd.Series(tag_date.to_list(),index=train_df.index)  # to be fixed
    return train_df_loc

# Introduce time as input
X_traindf['gpsTime_float'] = train_df['gpsTime_float']
# introduce first tag per day
TagNum=1
train_df = Tag_per_day(train_df,TagNum)
#examples on groupby
Unq_tag1_grps = list(train_df.groupby(train_df.Tag1).groups.keys())
train_df.groupby(train_df.Tag1).first()
train_df.groupby(train_df.Tag1)['gpsTime_float'].count()
X_traindf['Tag'+str(TagNum)] =  train_df['Tag'+str(TagNum)]
#############################
# introduce epoch as tag
#############################
TagNum=2
train_df['Tag'+str(TagNum)] = train_df.epoch
X_traindf['Tag'+str(TagNum)] =  train_df['Tag'+str(TagNum)]
#############################
# introduce core as tag
#############################
TagNum=3
train_df['Tag'+str(TagNum)] = train_df.core
X_traindf['Tag'+str(TagNum)] =  train_df['Tag'+str(TagNum)]
#############################
# introduce day as tag per client
#############################
TagNum = 4
RepNum = np.ceil(train_df.shape[0]/(Num_Cons_Sample_Client*Num_Clients))
Part_Tag_Array=[]
for i in np.arange(Num_Clients):
    Part_Tag_Tmp = list(map(lambda _: i+1,range(Num_Cons_Sample_Client)))
    Part_Tag_Array.extend(Part_Tag_Tmp)

Full_Tag_Array2 = Part_Tag_Array * int(RepNum)
extra_tags = np.abs(len(Full_Tag_Array2) - train_df.shape[0])
Full_Tag_Array = Full_Tag_Array2[:-extra_tags]

train_df.loc[:,'Tag'+str(TagNum)] = pd.Series(Full_Tag_Array,index=train_df.index)
X_traindf.loc[:,'Tag'+str(TagNum)] = train_df['Tag'+str(TagNum)]
#############################
# END day as tag per client
#############################
######### Introduce gpsTime and Tag to the input
Input_str.extend(['gpsTime_float',Final_Tag])

#FLObj = FLTest()
#FLObj.test_self_contained_example(X_traindf[Input_str].values, Y_traindf[Output_str].values)

###### Adding StandardSalarization:
scaler = StandardScaler()
removed_column = Input_str.pop()
X_train_ScaledTmp = scaler.fit_transform(X_traindf[Input_str],Y_traindf[Output_str])
# Adding Int tag per client without scalarization
X_train_Scaled = np.c_[X_train_ScaledTmp, train_df[removed_column].values.reshape(train_df.shape[0],1)]

# X_train_Scaled = scaler.transform(X_traindf[Input_str])

# All In/Out data Numpy
Act_Inputs_Int_Tag  = X_train_Scaled
Act_Outputs_Int = Y_traindf[Output_str].values
# Remove Tags
Act_Inputs_Int = np.delete(Act_Inputs_Int_Tag,-1,axis=1) 

# prepare In/Out per Client
All_Act_Inputs_Int_Tag  = [Act_Inputs_Int_Tag[np.where(Act_Inputs_Int_Tag[:,-1]== x)] for x in np.arange(1,Num_Clients+1)]
All_Act_Outputs_Int = [Act_Outputs_Int[np.where(Act_Inputs_Int_Tag[:,-1]== x)] for x in np.arange(1,Num_Clients+1)]
# Remove Tags
All_Act_Inputs_Int = [np.delete(All_Act_Inputs_Int_Tag[x],-1,axis=1)  for x in np.arange(0,Num_Clients) ]


# a need conversion to float32
Act_Inputs = np.float32(Act_Inputs_Int)
Act_Outputs = np.float32(Act_Outputs_Int)
# convert dataset to client based dataset
All_Act_Inputs = [np.float32(All_Act_Inputs_Int[x]) for x in np.arange(0,Num_Clients)]
All_Act_Outputs = [np.float32(All_Act_Outputs_Int[x]) for x in np.arange(0,Num_Clients)]
# convert to OrderedDict
new_batch = collections.OrderedDict([('In', Act_Inputs),('Out', Act_Outputs)])
All_new_batch = [collections.OrderedDict([('In', All_Act_Inputs[x]),('Out', All_Act_Outputs[x])]) for x in np.arange(0,Num_Clients)]
# Convert to tensor
dataset_input = tf.data.Dataset.from_tensor_slices(new_batch)#,,maxval=100, dtype=tf.float32)
# All_new_batch has different item per In / Out
All_dataset_input = [tf.data.Dataset.from_tensor_slices(All_new_batch[x]) for x in np.arange(0,Num_Clients)]
# Select among the datasets
Used_dataset= dataset_input
All_Used_dataset= All_dataset_input


with eager_mode():

    def preprocess(new_dataset):
        #return Used_dataset.repeat(2).batch(2)
        def map_fn(elem):
            return collections.OrderedDict([('x', tf.reshape(elem['In'], [-1])),('y', tf.reshape(elem['Out'],[1]))])

        DS2= new_dataset.map(map_fn)
        #return DS2.repeat(SNN_epoch).map(map_fn).shuffle(shuffle_buffer).batch(SNN_batch_size)
        return DS2.repeat(SNN_epoch).batch(SNN_batch_size)

    train_data = [preprocess(Used_dataset)]

    #######changes###############33
    def make_federated_data(client_data, client_ids):
        return [preprocess(client_data[x]) for x in client_ids]

    #@test {"output": "ignore"}
    # sample_clients = [0:Num_Clients]
    federated_train_data =  make_federated_data(All_Used_dataset, np.arange(0,Num_Clients))

    sample_batch = tf.contrib.framework.nest.map_structure(lambda x: x.numpy(), next(iter(train_data[0])))

    ########## END Changes ############            

    def create_SK_model():
        modelF = tf.keras.models.Sequential([tf.keras.layers.Dense(SNN_Layers[0],activation=tf.nn.relu,input_shape=(Act_Inputs.shape[1],), kernel_initializer='RandomNormal'),
                                      tf.keras.layers.BatchNormalization(),
                                      tf.keras.layers.Dense(SNN_Layers[1], activation=tf.nn.relu, kernel_initializer='RandomNormal'),
                                      tf.keras.layers.Dropout(0.2),
                                      tf.keras.layers.Dense(1, activation=tf.nn.relu, kernel_initializer='RandomNormal'),
                                      ])    
        return modelF
    # keras model loss function
    def loss_fn():
        return tf.keras.losses.MeanSquaredError()  
    # Federated model loss function 
    def loss_fn_Federated(y_true, y_pred):
        return tf.reduce_mean(tf.keras.losses.MSE(y_true, y_pred))

    def model_fn_Federated():
        return tff.learning.from_keras_model(create_SK_model(),sample_batch,
                                             loss=loss_fn_Federated,
                                             optimizer=gradient_descent.SGD(learn_rate))

    YTrain = Act_Outputs #np.random.rand(50,1)
    XTrain = Act_Inputs  #np.random.rand(50,100)
    # locally compile the model
    Local_model = create_SK_model()
    Local_model.compile(loss=tf.keras.losses.MeanSquaredError(),optimizer=tf.keras.optimizers.SGD(lr=learn_rate,decay=1e-6,momentum=0.9,nesterov=True))
    # fitting without federated learning
    trained_local_Model = Local_model.fit(XTrain,YTrain, validation_split=Val_Train_Split, epochs=SNN_epoch, batch_size=SNN_batch_size) #tbuc
    # Loss of local model
    Local_Loss = trained_local_Model.history['loss'] # tbuc
    # Copy local model for comparison purposes
    Local_model_Fed = Local_model

    # training/fitting with TF federated learning
    trainer_Itr_Process = tff.learning.build_federated_averaging_process(model_fn_Federated,server_optimizer_fn=(lambda : gradient_descent.SGD(learning_rate=learn_rate)),client_weight_fn=None)
    FLstate = trainer_Itr_Process.initialize()
    FL_Loss_arr  = []
    Fed_eval_arr = []
    # Track loss of different ...... of federated iteration
    for round_num in range(2,10): 
        """
        The second of the pair of federated computations, next, represents a single round of Federated Averaging, which consists of pushing the server state (including the model parameters) to the clients, on-device training on their local data, collecting and averaging model updates, and producing a new updated model at the server.
        """ 
        FLstate, FLoutputs = trainer_Itr_Process.next(FLstate, federated_train_data)   
        # Track the loss.
        FL_Loss_arr.append(FLoutputs.loss)
        # Setting federated weights on copied Object of local model
        tff.learning.assign_weights_to_keras_model(Local_model_Fed,FLstate.model)
        #Local_model_Fed.set_weights(tff_weights)
        print(tff.__name__)

        # Evaluate loss of the copied federated weights on local model
        Fed_predicted = Local_model_Fed.predict(XTrain)
        Fed_eval = Local_model_Fed.evaluate(XTrain,YTrain)
        Fed_eval_arr.append(Fed_eval)


if True:
    FieldnamesSNN = ['Local_Loss', 'FL_Loss_arr','Fed_eval_arr']
    Valuesall2    = [Local_Loss,FL_Loss_arr,Fed_eval_arr]
#     ValuesallSNN  = Valuesall2.transpose()
    ValuesallSNN = Valuesall2
    workbook      = xlsxwriter.Workbook(tosave_Path + Sim_Feature_Name+'SNN_loss.xlsx')
    worksheetSNN  = workbook.add_worksheet(Sim_Feature_Name+'SNN_loss')
    row = 0
    col = 0
    #Write Validation results
    prev_col_len=0

    for names in  FieldnamesSNN:
        row=0
        worksheetSNN.write(row,col,names)
#         values = ValuesallSNN[:,col]
        values = np.array(ValuesallSNN)[col]
        row=row + 1
        for val in values:
            print(val)
            worksheetSNN.write(row,col,val)
            row=row+1

        col = col +1

    workbook.close()

目前的结果是(Local_Loss 是 keras 模型,FL_Loss_arr:是每个客户端的损失,Fed_eval_arr:是聚合模式的损失)

Local_Loss  FL_Loss_arr Fed_eval_arr
0.361531615257263   0.027410915121436   0.386061603840212
0.354410231113434   0.026805186644197   0.378279162582626
0.32423609495163    0.026369236409664   0.370627223614037
0.287901371717453   0.02615818567574    0.363125243503663
0.244472771883011   0.025971807539463   0.355770364471598
0.203615099191666   0.025779465213418   0.348538321804381
0.165129363536835   0.025623736903071   0.341443773817459
0.130221307277679   0.025475736707449   0.334481204779932
0.103743642568588       
0.084212586283684       
0.065002344548702       
0.057881370186806       
0.054710797965527       
0.050441317260265       
0.050083305686712       
0.049112796783447       
0.050076562911272       
0.051196228712797       
0.05450239777565        
0.053276151418686       
4

1 回答 1

1

我看到有两件事让我眼前一亮。

  1. 第一,双重使用learn_rate此处介绍的联合平均首先计算客户端更新,其中梯度由学习率缩放,然后在服务器将这些聚合为加权平均值。特别是,服务器也不会根据学习率进行扩展。将更新按学习率缩放两次将导致学习率的有效平方,这很容易解释显着的减速。

  2. 其次,使用批量归一化。联邦优化中的批量标准化是一个非常开放的研究领域。目前尚不清楚在联合环境中是否会实现与在数据中心中相同的优化优势。您对这个问题的答案的信念应该取决于您认为 BatchNorm 发挥其魔力的机制,最近对此进行了辩论

话虽如此,我会尝试将服务器的学习率设置为 1,移除 BatchNorm 层,并确保集中模型和联合模型处理等量的数据,以便进行直接比较。在极端情况下,联合平均只会简化为梯度下降,因此如果您看到鲜明的对比,则可能是优化问题中的错误指定。

希望这可以帮助!!

于 2019-06-24T23:38:06.423 回答