1

我试着适应我的曲线。我的原始数据在 xlsx 文件中。我使用熊猫提取它们。我想做两种不同的拟合,因为 Ra = 1e6 的行为发生了变化。我们知道 Ra 与 Nu**a 成正比。对于 Ra <1e6,a = 0.25,如果不是,则 a = 0.33。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from math import log10
from scipy.optimize import curve_fit
import lmfit

data=pd.read_excel('data.xlsx',sheet_name='Sheet2',index=False,dtype={'Ra': float})
print(data)
plt.xscale('log')
plt.yscale('log')
plt.scatter(data['Ra'].values, data['Nu_top'].values, label='Nu_top')
plt.scatter(data['Ra'].values, data['Nu_bottom'].values, label='Nu_bottom')
plt.errorbar(data['Ra'].values, data['Nu_top'].values , yerr=data['Ecart type top'].values, linestyle="None") 
plt.errorbar(data['Ra'].values, data['Nu_bottom'].values , yerr=data['Ecart type bot'].values, linestyle="None")

def func(x,a):
    return 10**(np.log10(x)/a)

"""maxX = max(data['Ra'].values)
minX = min(data['Ra'].values)
maxY = max(data['Nu_top'].values)
minY = min(data['Nu_top'].values)
maxXY = max(maxX, maxY)
parameterBounds = [-maxXY, maxXY]"""

from lmfit import Model
mod = Model(func)
params = mod.make_params(a=0.25)
ret = mod.fit(data['Nu_top'].head(10).values, params, x=data['Ra'].head(10).values)
print(ret.fit_report())

popt, pcov = curve_fit(func, data['Ra'].head(10).values, 
data['Nu_top'].head(10).values, sigma=data['Ecart type top'].head(10).values,
 absolute_sigma=True, p0=[0.25])
plt.plot(data['Ra'].head(10).values, func(data['Ra'].head(10).values, *popt),
 'r-', label='fit: a=%5.3f' % tuple(popt))

popt, pcov = curve_fit(func, data['Ra'].tail(4).values, data['Nu_top'].tail(4).values,
 sigma=data['Ecart type top'].tail(4).values, 
absolute_sigma=True, p0=[0.33])
plt.plot(data['Ra'].tail(4).values, func(data['Ra'].tail(4).values, *popt),
 'b-', label='fit: a=%5.3f' % tuple(popt))

print(pcov)

plt.grid
plt.title("Nusselt en fonction de Ra")
plt.xlabel('Ra')
plt.ylabel('Nu')
plt.legend()
plt.show()

所以我使用日志:logRa = a * logNu。Ra = x 轴 Nu = y 轴 这就是我以这种方式定义函数 func 的原因。

如您所见,我的两次合身并不完全正确。我的协方差等于 [0.00010971]。所以我不得不做错事,但我没有看到。我需要帮助。这里的数据文件: data.xlsx 在此处输入图像描述

4

3 回答 3

0

我注意到 Ra 的数据值很大,在缩放它们后我执行了方程搜索 - 这是我的代码结果。我使用标准的 scipy 遗传算法模块differential_evolution 来确定curve_fit() 的初始参数值,并且该模块使用拉丁超立方算法来确保彻底搜索需要搜索范围的参数空间。给出初始参数估计值的范围比找到具体值要容易得多。此等式适用于 nu_top 和 nu_bottom,请注意,这些图不是对数缩放的,因为在此示例中它是不必要的。

阴谋

import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import pandas
import warnings

filename = 'data.xlsx'
data=pandas.read_excel(filename,sheet_name='Sheet2',index=False,dtype={'Ra': float})

# notice the Ra scaling by 10000.0
xData = data['Ra'].values / 10000.0
yData = data['Nu_bottom']


def func(x, a, b, c): # "Combined Power And Exponential" from zunzun.com
    return a * numpy.power(x, b) * numpy.exp(c * x)


# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
    warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
    val = func(xData, *parameterTuple)
    return numpy.sum((yData - val) ** 2.0)


def generate_Initial_Parameters():
    # min and max used for bounds
    maxX = max(xData)
    minX = min(xData)
    maxY = max(yData)
    minY = min(yData)

    parameterBounds = []
    parameterBounds.append([0.0, 10.0]) # search bounds for a
    parameterBounds.append([0.0, 10.0]) # search bounds for b
    parameterBounds.append([0.0, 10.0]) # search bounds for c

    # "seed" the numpy random number generator for repeatable results
    result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
    return result.x

# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()

# now call curve_fit without passing bounds from the genetic algorithm,
# just in case the best fit parameters are aoutside those bounds
fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Fitted parameters:', fittedParameters)
print()

modelPredictions = func(xData, *fittedParameters) 

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))

print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plot
    xModel = numpy.linspace(min(xData), max(xData))
    yModel = func(xModel, *fittedParameters)

    # now the model as a line plot
    axes.plot(xModel, yModel)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)
于 2019-06-04T17:44:20.757 回答
0

这里我把我的数据 x 和 y 放在 log10() 中。该图采用对数刻度。所以通常我应该有两个系数分别为 0.25 和 0.33 的仿射函数。我更改了您的程序 James 中的函数 func 和 b 和 c 的界限,但我没有好的结果。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from math import log10, log
from scipy.optimize import curve_fit
import lmfit

data=pd.read_excel('data.xlsx',sheet_name='Sheet2',index=False,dtype={'Ra': float})
print(data)
plt.xscale('log')
plt.yscale('log')
plt.scatter(np.log10(data['Ra'].values), np.log10(data['Nu_top'].values), label='Nu_top')
plt.scatter(np.log10(data['Ra'].values), np.log10(data['Nu_bottom'].values), label='Nu_bottom')

plt.errorbar(np.log10(data['Ra'].values), np.log10(data['Nu_top'].values) , yerr=data['Ecart type top'].values, linestyle="None") 
plt.errorbar(np.log10(data['Ra'].values), np.log10(data['Nu_bottom'].values) , yerr=data['Ecart type bot'].values, linestyle="None")

def func(x,a):
    return a*x

maxX = max(data['Ra'].values)
minX = min(data['Ra'].values)
maxY = max(data['Nu_top'].values)
minY = min(data['Nu_top'].values)
maxXY = max(maxX, maxY)
parameterBounds = [-maxXY, maxXY]

from lmfit import Model
mod = Model(func)
params = mod.make_params(a=0.25)
ret = mod.fit(np.log10(data['Nu_top'].head(10).values), params, x=np.log10(data['Ra'].head(10).values))
print(ret.fit_report())



popt, pcov = curve_fit(func, np.log10(data['Ra'].head(10).values), np.log10(data['Nu_top'].head(10).values), sigma=data['Ecart type top'].head(10).values, absolute_sigma=True, p0=[0.25])
plt.plot(np.log10(data['Ra'].head(10).values), func(np.log10(data['Ra'].head(10).values), *popt), 'r-', label='fit: a=%5.3f' % tuple(popt))

popt, pcov = curve_fit(func, np.log10(data['Ra'].tail(4).values), np.log10(data['Nu_top'].tail(4).values), sigma=data['Ecart type top'].tail(4).values, absolute_sigma=True, p0=[0.33])
plt.plot(np.log10(data['Ra'].tail(4).values), func(np.log10(data['Ra'].tail(4).values), *popt), 'b-', label='fit: a=%5.3f' % tuple(popt))

print(pcov)

plt.grid
plt.title("Nusselt en fonction de Ra")
plt.xlabel('log10(Ra)')
plt.ylabel('log10(Nu)')
plt.legend()
plt.show()

在此处输入图像描述

于 2019-06-05T09:45:34.083 回答
0

使用 polyfit 我有更好的结果。使用我的代码打开文件并计算 log (Ra) 和 log (Nu),然后以对数比例绘制 (log (Ra), log (Nu))。对于 Ra <1e6,我应该有 a = 0.25,如果不是,则 a = 0.33

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from math import log10
from numpy import polyfit
import numpy.polynomial.polynomial as poly

data=pd.read_excel('data.xlsx',sheet_name='Sheet2',index=False,dtype={'Ra': float})
print(data)

x=np.log10(data['Ra'].values)
y1=np.log10(data['Nu_top'].values)
y2=np.log10(data['Nu_bottom'].values)
x2=np.log10(data['Ra'].head(11).values)
y4=np.log10(data['Nu_top'].head(11).values)
x3=np.log10(data['Ra'].tail(4).values)
y5=np.log10(data['Nu_top'].tail(4).values)

plt.xscale('log')
plt.yscale('log')
plt.scatter(x, y1, label='Nu_top')
plt.scatter(x, y2, label='Nu_bottom')

plt.errorbar(x, y1 , yerr=data['Ecart type top'].values, linestyle="None") 
plt.errorbar(x, y2 , yerr=data['Ecart type bot'].values, linestyle="None")


"""a=np.ones(10, dtype=np.float)
weights = np.insert(a,0,1E10)"""



coefs = poly.polyfit(x2, y4, 1)
print(coefs)
ffit = poly.polyval(x2, coefs)
plt.plot(x2, ffit, label='fit: b=%5.3f, a=%5.3f' % tuple(coefs))

absError = ffit - x2

SE = np.square(absError) # squared errors
MSE = np.mean(SE) # mean squared errors
RMSE = np.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (np.var(absError) / np.var(x2))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
print('Predicted value at x=0:', ffit[0])
print()


coefs = poly.polyfit(x3, y5, 1)
ffit = poly.polyval(x3, coefs)
plt.plot(x3, ffit, label='fit: b=%5.3f, a=%5.3f' % tuple(coefs))

plt.grid
plt.title("Nusselt en fonction de Ra")
plt.xlabel('log10(Ra)')
plt.ylabel('log10(Nu)')
plt.legend()
plt.show()

在此处输入图像描述

我的问题解决了,我设法用或多或少正确的结果来拟合我的曲线

于 2019-06-05T12:43:57.023 回答