这不可能是一个合适的张量,因为尺寸不均匀。如果您可以使用参差不齐的张量,您可以这样做:
import tensorflow as tf
with tf.Graph().as_default(), tf.Session() as sess:
b = tf.constant([[1, 0, 0, 0, 0],
[1, 0, 1, 0, 1]],dtype=tf.float32)
num_rows = tf.shape(b)[0]
zero = tf.constant(0, dtype=tf.float32)
where = tf.not_equal(b, zero)
indices = tf.where(where)
s = tf.ragged.segment_ids_to_row_splits(indices[:, 0], num_rows)
row_start = s[:-1]
elem_per_row = s[1:] - row_start
idx = tf.expand_dims(row_start, 1) + tf.ragged.range(elem_per_row)
result = tf.gather(indices[:, 1], idx)
print(sess.run(result))
# <tf.RaggedTensorValue [[0], [0, 2, 4]]>
编辑:如果您不想或不能使用参差不齐的张量,这里有一个替代方案。您可以生成一个用“无效”值填充的张量。例如,您可以在这些无效值中使用 -1,或者只使用一个 1D 张量来告诉您每行有多少个有效值:
import tensorflow as tf
with tf.Graph().as_default(), tf.Session() as sess:
b = tf.constant([[1, 0, 0, 0, 0],
[1, 0, 1, 0, 1]],dtype=tf.float32)
num_rows = tf.shape(b)[0]
zero = tf.constant(0, dtype=tf.float32)
where = tf.not_equal(b, zero)
indices = tf.where(where)
num_indices = tf.shape(indices)[0]
elem_per_row = tf.bincount(tf.cast(indices[:, 0], tf.int32), minlength=num_rows)
row_start = tf.concat([[0], tf.cumsum(elem_per_row[:-1])], axis=0)
max_elem_per_row = tf.reduce_max(elem_per_row)
r = tf.range(max_elem_per_row)
idx = tf.expand_dims(row_start, 1) + r
idx = tf.minimum(idx, num_indices - 1)
result = tf.gather(indices[:, 1], idx)
# Optional: replace invalid elements with -1
result = tf.where(tf.expand_dims(elem_per_row, 1) > r, result, -tf.ones_like(result))
print(sess.run(result))
# [[ 0 -1 -1]
# [ 0 2 4]]
print(sess.run(elem_per_row))
# [1 3]