3

我需要知道是否有更快的方法来获取 LBP 和 MNIST 数据集的结果直方图。这将用于手写文本识别,通过一个我还没有决定的模型..

我已经加载了 MNIST 数据集,并根据tensorflow教程将其拆分为 x、y 训练集和 x、y 测试集。

然后我习惯于cv2反转图像。

从那里我定义了一个函数,skimage用于获取输入图像的 LBP 和相应的直方图

我最后使用了一个经典for循环来遍历图像,获取它们的直方图,将它们存储在一个单独的列表中,并返回新列表以及训练集和测试集的未更改标签列表。

这是加载 MNIST 数据集的函数:

def loadDataset():
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    # should I invert it or not?
    x_train = cv2.bitwise_not(x_train)
    x_test = cv2.bitwise_not(x_test)

    return (x_train, y_train), (x_test, y_test)

这是获取 LBP 和相应直方图的函数:

def getLocalBinaryPattern(img, points, radius):
    lbp = feature.local_binary_pattern(img, points, radius, method="uniform")
    hist, _ = np.histogram(lbp.ravel(), 
                bins=np.arange(0, points + 3),
                range=(0, points + 2))

    return lbp, hist

最后是迭代图像的函数:

def formatDataset(dataset):
    (x_train, y_train), (x_test, y_test) = dataset

    x_train_hst = []
    for i in range(len(x_train)):
        _, hst = getLocalBinaryPattern(x_train[i], 8, 1)
        print("Computing LBP for training set: {}/{}".format(i, len(x_train)))
        x_train_hst.append(hst)

    print("Done computing LBP for training set!")

    x_test_hst=[]
    for i in range(len(x_test)):
        _, hst = getLocalBinaryPattern(x_test[i], 8, 1)
        print("Computing LBP for test set: {}/{}".format(i, len(x_test)))
        x_test_hst.append(hst)

    print("Done computing LBP for test set!")

    print("Done!")

    return (x_train_hst, y_train), (x_test_hst, y_test)

我知道它会很慢,而且确实很慢。所以我正在寻找更多的方法来加速它,或者是否已经有一个版本的数据集包含我需要的这些信息。

4

1 回答 1

1

我认为没有一种直接的方法可以加快图像的迭代速度。人们可能期望使用 NumPy 的vectorizeorapply_along_axis会提高性能,但这些解决方案实际上比for循环(或列表理解)慢。

演示

迭代图像的不同选择:

def compr(imgs):
    hists = [getLocalBinaryPattern(img, 8, 1)[1] for img in imgs]
    return hists

def vect(imgs):
    lbp81riu2 = lambda img: getLocalBinaryPattern(img, 8, 1)[1]
    vec_lbp81riu2 = np.vectorize(lbp81riu2, signature='(m,n)->(k)')
    hists = vec_lbp81riu2(imgs)
    return hists

def app(imgs):
    lbp81riu2 = lambda img: getLocalBinaryPattern(img.reshape(28, 28), 8, 1)[1]
    pixels = np.reshape(imgs, (len(imgs), -1))
    hists = np.apply_along_axis(lbp81riu2, 1, pixels)
    return hists

结果:

In [112]: (x_train, y_train), (x_test, y_test) = loadDataset()

In [113]: %timeit -r 3 compr(x_train)
1 loop, best of 3: 14.2 s per loop

In [114]: %timeit -r 3 vect(x_train)
1 loop, best of 3: 17.1 s per loop

In [115]: %timeit -r 3 app(x_train)
1 loop, best of 3: 14.3 s per loop

In [116]: np.array_equal(compr(x_train), vect(x_train))
Out[116]: True

In [117]: np.array_equal(compr(x_train), app(x_train))
Out[117]: True
于 2019-05-08T11:26:23.950 回答