选项 1:从 MATLAB 调用 numpy
假设您的系统是根据文档设置的,并且您已经安装了 numpy 包,您可以这样做(在 MATLAB 中):
np = py.importlib.import_module('numpy');
M = 2;
N = 4;
I = 2000;
J = 300;
A = matpy.mat2nparray( randn(M, M, I) );
B = matpy.mat2nparray( randn(M, M, N, J, I) );
C = matpy.mat2nparray( randn(M, J, I) );
D = matpy.nparray2mat( np.einsum('mki, klnji, lji -> mnji', A, B, C) );
在这里matpy
可以找到。
选项 2:本机 MATLAB
这里最重要的部分是让排列正确,所以我们需要跟踪我们的维度。我们将使用以下顺序:
I(1) J(2) K(3) L(4) M(5) N(6)
现在,我将解释如何获得正确的置换顺序(我们以 为例A
):einsum
期望维度顺序为mki
,根据我们的编号为5 3 1
。这告诉我们第 1维A
需要是第 5维,第2维需要是第3维,第3维需要是第 1维(简而言之1->5, 2->3, 3->1
)。这也意味着“无源维度”(即那些没有原始维度成为它们的维度;在本例中为 2 4 6)应该是单例的。使用ipermute
它编写起来非常简单:
pA = ipermute(A, [5,3,1,2,4,6]);
在上面的例子中,1->5
意味着我们5
先写,其他两个维度也是如此(产生 [5,3,1])。然后我们只需在末尾添加单例 (2,4,6) 即可得到[5,3,1,2,4,6]
. 最后:
A = randn(M, M, I);
B = randn(M, M, N, J, I);
C = randn(M, J, I);
% Reference dim order: I(1) J(2) K(3) L(4) M(5) N(6)
pA = ipermute(A, [5,3,1,2,4,6]); % 1->5, 2->3, 3->1; 2nd, 4th & 6th are singletons
pB = ipermute(B, [3,4,6,2,1,5]); % 1->3, 2->4, 3->6, 4->2, 5->1; 5th is singleton
pC = ipermute(C, [4,2,1,3,5,6]); % 1->4, 2->2, 3->1; 3rd, 5th & 6th are singletons
pD = sum( ...
permute(pA .* pB .* pC, [5,6,2,1,3,4]), ... 1->5, 2->6, 3->2, 4->1; 3rd & 4th are singletons
[5,6]);
(请参阅sum
帖子底部的注释。)
正如@AndrasDeak 所提到的,在 MATLAB 中执行此操作的另一种方法如下:
rD = squeeze(sum(reshape(A, [M, M, 1, 1, 1, I]) .* ...
reshape(B, [1, M, M, N, J, I]) .* ...
... % same as: reshape(B, [1, size(B)]) .* ...
... % same as: shiftdim(B,-1) .* ...
reshape(C, [1, 1, M, 1, J, I]), [2, 3]));
另见:squeeze
, reshape
, permute
, ipermute
, shiftdim
.
这是一个完整的示例,显示测试这些方法是否等效:
function q55913093
M = 2;
N = 4;
I = 2000;
J = 300;
mA = randn(M, M, I);
mB = randn(M, M, N, J, I);
mC = randn(M, J, I);
%% Option 1 - using numpy:
np = py.importlib.import_module('numpy');
A = matpy.mat2nparray( mA );
B = matpy.mat2nparray( mB );
C = matpy.mat2nparray( mC );
D = matpy.nparray2mat( np.einsum('mki, klnji, lji -> mnji', A, B, C) );
%% Option 2 - native MATLAB:
%%% Reference dim order: I(1) J(2) K(3) L(4) M(5) N(6)
pA = ipermute(mA, [5,3,1,2,4,6]); % 1->5, 2->3, 3->1; 2nd, 4th & 6th are singletons
pB = ipermute(mB, [3,4,6,2,1,5]); % 1->3, 2->4, 3->6, 4->2, 5->1; 5th is singleton
pC = ipermute(mC, [4,2,1,3,5,6]); % 1->4, 2->2, 3->1; 3rd, 5th & 6th are singletons
pD = sum( permute( ...
pA .* pB .* pC, [5,6,2,1,3,4]), ... % 1->5, 2->6, 3->2, 4->1; 3rd & 4th are singletons
[5,6]);
rD = squeeze(sum(reshape(mA, [M, M, 1, 1, 1, I]) .* ...
reshape(mB, [1, M, M, N, J, I]) .* ...
reshape(mC, [1, 1, M, 1, J, I]), [2, 3]));
%% Comparisons:
sum(abs(pD-D), 'all')
isequal(pD,rD)
运行上面我们得到的结果确实是等价的:
>> q55913093
ans =
2.1816e-10
ans =
logical
1
请注意,这两种调用方法sum
是在最近的版本中引入的,因此如果您的 MATLAB 相对较旧,您可能需要替换它们:
S = sum(A,'all') % can be replaced by ` sum(A(:)) `
S = sum(A,vecdim) % can be replaced by ` sum( sum(A, dim1), dim2) `
根据评论中的要求,这是比较方法的基准:
function t = q55913093_benchmark(M,N,I,J)
if nargin == 0
M = 2;
N = 4;
I = 2000;
J = 300;
end
% Define the arrays in MATLAB
mA = randn(M, M, I);
mB = randn(M, M, N, J, I);
mC = randn(M, J, I);
% Define the arrays in numpy
np = py.importlib.import_module('numpy');
pA = matpy.mat2nparray( mA );
pB = matpy.mat2nparray( mB );
pC = matpy.mat2nparray( mC );
% Test for equivalence
D = cat(5, M1(), M2(), M3());
assert( sum(abs(D(:,:,:,:,1) - D(:,:,:,:,2)), 'all') < 1E-8 );
assert( isequal (D(:,:,:,:,2), D(:,:,:,:,3)));
% Time
t = [ timeit(@M1,1), timeit(@M2,1), timeit(@M3,1)];
function out = M1()
out = matpy.nparray2mat( np.einsum('mki, klnji, lji -> mnji', pA, pB, pC) );
end
function out = M2()
out = permute( ...
sum( ...
ipermute(mA, [5,3,1,2,4,6]) .* ...
ipermute(mB, [3,4,6,2,1,5]) .* ...
ipermute(mC, [4,2,1,3,5,6]), [3,4]...
), [5,6,2,1,3,4]...
);
end
function out = M3()
out = squeeze(sum(reshape(mA, [M, M, 1, 1, 1, I]) .* ...
reshape(mB, [1, M, M, N, J, I]) .* ...
reshape(mC, [1, 1, M, 1, J, I]), [2, 3]));
end
end
在我的系统上,这会导致:
>> q55913093_benchmark
ans =
1.3964 0.1864 0.2428
这意味着第二种方法更可取(至少对于默认输入大小)。