5

我想缩小绘图区域,以便为ggrepel当前被切断的标签留出更多空间。我似乎无法再通过 偏移标签nudge_x(),并且我不想缩小文本大小。

我正在尝试找到一种压缩图表的方法,以便所有组都更靠近中心,为 x 轴极端的标签留出更多空间。

在此处输入图像描述

具体来说,我正在尝试将这个数字编织成一个肖像 PDF。我尝试控制fig.width块选项,但这只会使整个图表变小。

我想最大化纵向页面上的宽度,但相对于标签区域缩小绘图区域。

---
title             : "The title"
shorttitle        : "Title"

author: 
  - name          : "Me"
    affiliation   : "1"
    corresponding : yes    # Define only one corresponding author
    address       : "Address"
    email         : "email"

affiliation:
  - id            : "1"
    institution   : "Company"

authornote: |
  Note here

abstract: |
  Abstract here.


floatsintext      : yes
figurelist        : no
tablelist         : no
footnotelist      : no
linenumbers       : no
mask              : no
draft             : no
note              : "\\clearpage"

documentclass     : "apa6"
classoption       : "man,noextraspace"
header-includes:
  - \usepackage{pdfpages}
  - \usepackage{setspace}
  - \AtBeginEnvironment{tabular}{\singlespacing}
  - \makeatletter\let\expandableinput\@@input\makeatother
  - \interfootnotelinepenalty=10000
  - \usepackage{float} #use the 'float' package
  - \floatplacement{figure}{H} #make every figure with caption = h
  - \raggedbottom
output            : papaja::apa6_pdf
---


```{r test, fig.cap="Caption.", fig.height=8, include=TRUE, echo=FALSE}
library("papaja")
library(tidyverse)
library(ggrepel)

ageGenderF <- structure(list(genAge = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("Women, 15-19", 
"Women, 20-24", "Women, 25-35", "Women, 36+"), class = "factor"), 
    word_ = c("this is label 2", "this is label 3", "this is label 4", 
    "this is label 1", "this is label 7", "this is label 5", 
    "this is label 8", "this is label 10", "this is label 11", 
    "this is label 20", "this is label 12", "this is label 6", 
    "this is label 17", "this is label 9", "this is label 15", 
    "this is label 21", "this is label 31", "this is label 25", 
    "this is label 26", "this is label 19", "this is label 24", 
    "this is label 28", "this is label 29", "this is label 30", 
    "this is label 14", "this is label 22", "this is label 18", 
    "this is label 54", "this is label 32", "this is label 44", 
    "this is label 52", "this is label 34", "this is label 59", 
    "this is label 48", "this is label 23", "this is label 47", 
    "this is label 38", "this is label 35", "this is label 61", 
    "this is label 56", "this is label 39", "this is label 72", 
    "this is label 42", "this is label 16", "this is label 66", 
    "this is label 37", "this is label 51", "this is label 27", 
    "this is label 40", "this is label 73", "this is label 60", 
    "this is label 113", "this is label 50", "this is label 45", 
    "this is label 81", "this is label 84", "this is label 53", 
    "this is label 49", "this is label 67", "this is label 68", 
    "this is label 46", "this is label 65", "this is label 41", 
    "this is label 57", "this is label 1", "this is label 2", 
    "this is label 3", "this is label 4", "this is label 5", 
    "this is label 6", "this is label 7", "this is label 8", 
    "this is label 9", "this is label 10", "this is label 11", 
    "this is label 12", "this is label 13", "this is label 14", 
    "this is label 15", "this is label 16", "this is label 17", 
    "this is label 18", "this is label 19", "this is label 20", 
    "this is label 21", "this is label 22", "this is label 23", 
    "this is label 24", "this is label 25", "this is label 26", 
    "this is label 27", "this is label 28", "this is label 29", 
    "this is label 30", "this is label 31", "this is label 32", 
    "this is label 33", "this is label 34", "this is label 35", 
    "this is label 36", "this is label 37", "this is label 38", 
    "this is label 39", "this is label 40", "this is label 41", 
    "this is label 42", "this is label 43", "this is label 44", 
    "this is label 45", "this is label 46", "this is label 47", 
    "this is label 48", "this is label 49", "this is label 50", 
    "this is label 51", "this is label 52", "this is label 53", 
    "this is label 54", "this is label 55", "this is label 56", 
    "this is label 57", "this is label 58", "this is label 59", 
    "this is label 60", "this is label 61", "this is label 62", 
    "this is label 63", "this is label 64", "this is label 1", 
    "this is label 2", "this is label 3", "this is label 6", 
    "this is label 4", "this is label 5", "this is label 12", 
    "this is label 7", "this is label 8", "this is label 9", 
    "this is label 10", "this is label 14", "this is label 11", 
    "this is label 18", "this is label 29", "this is label 45", 
    "this is label 27", "this is label 15", "this is label 26", 
    "this is label 71", "this is label 37", "this is label 13", 
    "this is label 25", "this is label 23", "this is label 22", 
    "this is label 41", "this is label 42", "this is label 55", 
    "this is label 52", "this is label 36", "this is label 34", 
    "this is label 17", "this is label 63", "this is label 24", 
    "this is label 19", "this is label 28", "this is label 38", 
    "this is label 32", "this is label 21", "this is label 30", 
    "this is label 35", "this is label 16", "this is label 64", 
    "this is label 20", "this is label 31", "this is label 53", 
    "this is label 77", "this is label 39", "this is label 70", 
    "this is label 57", "this is label 48", "this is label 43", 
    "this is label 132", "this is label 51", "this is label 66", 
    "this is label 58", "this is label 85", "this is label 120", 
    "this is label 65", "this is label 40", "this is label 121", 
    "this is label 78", "this is label 59", "this is label 141", 
    "this is label 1", "this is label 12", "this is label 6", 
    "this is label 2", "this is label 3", "this is label 5", 
    "this is label 4", "this is label 45", "this is label 52", 
    "this is label 26", "this is label 77", "this is label 8", 
    "this is label 7", "this is label 10", "this is label 14", 
    "this is label 31", "this is label 59", "this is label 178", 
    "this is label 18", "this is label 27", "this is label 42", 
    "this is label 70", "this is label 29", "this is label 37", 
    "this is label 330", "this is label 78", "this is label 25", 
    "this is label 34", "this is label 21", "this is label 450", 
    "this is label 83", "this is label 185", "this is label 57", 
    "this is label 16", "this is label 50", "this is label 126", 
    "this is label 895", "this is label 63", "this is label 402", 
    "this is label 19", "this is label 724", "this is label 40", 
    "this is label 11", "this is label 43", "this is label 758", 
    "this is label 1099", "this is label 73", "this is label 62", 
    "this is label 46", "this is label 183", "this is label 819", 
    "this is label 295", "this is label 1100", "this is label 17", 
    "this is label 282", "this is label 153", "this is label 1101", 
    "this is label 41", "this is label 1102", "this is label 446", 
    "this is label 216", "this is label 13", "this is label 109", 
    "this is label 20"), n = c(774L, 635L, 618L, 495L, 329L, 
    284L, 259L, 217L, 197L, 181L, 163L, 163L, 162L, 160L, 138L, 
    124L, 114L, 112L, 110L, 107L, 99L, 98L, 97L, 92L, 85L, 84L, 
    84L, 78L, 74L, 72L, 68L, 67L, 66L, 66L, 65L, 60L, 60L, 60L, 
    58L, 57L, 55L, 51L, 51L, 51L, 50L, 50L, 48L, 47L, 47L, 46L, 
    46L, 44L, 44L, 44L, 43L, 43L, 43L, 43L, 42L, 41L, 41L, 41L, 
    41L, 41L, 1568L, 1366L, 1220L, 1012L, 687L, 682L, 633L, 516L, 
    464L, 374L, 372L, 326L, 326L, 304L, 293L, 292L, 274L, 261L, 
    259L, 257L, 236L, 232L, 229L, 223L, 223L, 221L, 221L, 213L, 
    210L, 205L, 198L, 191L, 189L, 167L, 165L, 164L, 146L, 142L, 
    140L, 140L, 139L, 136L, 134L, 129L, 122L, 121L, 115L, 115L, 
    115L, 113L, 112L, 110L, 110L, 109L, 107L, 104L, 103L, 102L, 
    99L, 99L, 99L, 97L, 96L, 93L, 426L, 332L, 310L, 290L, 197L, 
    166L, 147L, 134L, 125L, 113L, 105L, 104L, 97L, 83L, 78L, 
    77L, 77L, 74L, 69L, 69L, 69L, 69L, 68L, 61L, 61L, 59L, 59L, 
    58L, 58L, 58L, 57L, 57L, 56L, 54L, 51L, 48L, 47L, 46L, 43L, 
    42L, 38L, 38L, 36L, 34L, 34L, 33L, 32L, 32L, 32L, 32L, 31L, 
    29L, 29L, 28L, 28L, 27L, 27L, 27L, 27L, 27L, 26L, 26L, 25L, 
    24L, 37L, 26L, 26L, 20L, 19L, 18L, 17L, 15L, 14L, 12L, 12L, 
    12L, 12L, 12L, 11L, 10L, 9L, 9L, 9L, 9L, 8L, 7L, 7L, 7L, 
    7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L), rank = c(1L, 2L, 
    3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
    16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 
    28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 
    40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 
    52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 
    64L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 
    14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 
    26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 
    38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 
    50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 
    62L, 63L, 64L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 
    12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 
    24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 
    36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 
    48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 
    60L, 61L, 62L, 63L, 64L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 
    9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 
    21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 
    33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 
    45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 
    57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L)), class = c("grouped_df", 
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -256L), groups = structure(list(
    genAge = structure(1:4, .Label = c("Women, 15-19", "Women, 20-24", 
    "Women, 25-35", "Women, 36+"), class = "factor"), .rows = list(
        1:64, 65:128, 129:192, 193:256)), row.names = c(NA, -4L
), class = c("tbl_df", "tbl", "data.frame"), .drop = TRUE))

ageGenderFLow <- 
  ageGenderF %>%
  filter(genAge=="Women, 15-19") %>%
  filter(rank<=10)

ageGenderFHigh <- 
  ageGenderF %>%
  filter(genAge=="Women, 36+") %>%
  filter(rank<=10)

ageGenderF_ <-
  ageGenderF %>%
  filter(word_ %in% ageGenderFLow$word_ |
         word_ %in% ageGenderFHigh$word_)

# get rank order of words for low set
ageGenderFLowRank <- 
  ageGenderF_ %>%
  filter(genAge=="Women, 15-19") %>%
  arrange(rank) %>%
  mutate(order = 1:n()) 

ageGenderF_ %>%
  mutate(word = factor(word_, ordered=TRUE, levels=ageGenderFLowRank$word_)) %>%
  # https://ibecav.github.io/slopegraph/
  ggplot(., aes(x = genAge, y = reorder(rank, -rank), group = word_)) +
  geom_line(aes(color = word_, alpha = 1), size = 1.5) +
  #geom_line(size = 0.5, color="lightgrey") +
  geom_text_repel(data = . %>% filter(genAge == "Women, 15-19"), 
                  aes(label = word) , 
                  hjust = "left", 
                  #fontface = "bold", 
                  size = 3, 
                  nudge_x = -3, 
                  direction = "y") +
  geom_text_repel(data = . %>% filter(genAge == "Women, 36+"), 
                  aes(label = word) , 
                  hjust = "right", 
                  #fontface = "bold", 
                  size = 3, 
                  nudge_x = 3, 
                  direction = "y") +
  geom_label(aes(label = rank), 
             size = 2.5, 
             label.padding = unit(0.15, "lines"), 
             label.size = 0.0) +
  scale_x_discrete(position = "top") +
  theme_bw() +
  # Remove the legend
  theme(legend.position = "none") +
  # Remove the panel border
  theme(panel.border     = element_blank()) +
  # Remove just about everything from the y axis
  theme(axis.title.y     = element_blank()) +
  theme(axis.text.y      = element_blank()) +
  theme(panel.grid.major.y = element_blank()) +
  theme(panel.grid.minor.y = element_blank()) +
  # Remove a few things from the x axis and increase font size
  theme(axis.title.x     = element_blank()) +
  theme(panel.grid.major.x = element_blank()) +
  theme(axis.text.x.top      = element_text(size=10)) +
  # Remove x & y tick marks
  theme(axis.ticks       = element_blank()) +
  # Format title & subtitle
  theme(plot.title       = element_text(size=10, face = "bold", hjust = 0.5)) +
  theme(plot.subtitle    = element_text(hjust = 0.5))
```



4

2 回答 2

6

如果你愿意改变你的方法,你可以做一个大的转变,并使用你正在使用的文本作为标签作为轴标签。您可以利用辅助轴为绘图的每一侧制作单独的标签,因此事情看起来很像您现在正在做的事情。

我看到的优点是文本适合,因为它现在是轴的一部分。

首先这里是一个使用rank因子的例子。您必须通过将因子转换为数字as.numeric()才能获得重复的轴(到目前为止,离散轴没有辅助轴)。然后还有一些工作要做,以获取每侧轴的中断和标签,因此我将数据操作移至第二步(并将rank2作为重新排序的因素,以便于breaks稍后进行)。

还要注意使用expandinscale_x_discrete()从面板区域的边缘周围删除空间。

ageGenderF_ = ageGenderF_ %>%
    ungroup() %>%
    mutate(word = factor(word_, ordered = TRUE, levels = ageGenderFLowRank$word_),
           rank2 = reorder(rank, -rank) )

ageGenderF_ %>%
    # https://ibecav.github.io/slopegraph/
    ggplot(., aes(x = genAge, y = as.numeric(rank2), group = word_)) +
    geom_line(aes(color = word_, alpha = 1), size = 1.5) +
    geom_label(aes(label = rank), 
           size = 2.5, 
           label.padding = unit(0.15, "lines"), 
           label.size = 0.0) +
    scale_x_discrete(position = "top", expand = c(0, .05) ) +
    scale_y_continuous(breaks = filter(ageGenderF_, genAge == "Women, 15-19") %>% pull(rank2) %>% as.numeric(), 
                    labels = filter(ageGenderF_, genAge == "Women, 15-19") %>% pull(word),
                    sec.axis = dup_axis(~., 
                                        breaks = filter(ageGenderF_, genAge == "Women, 36+") %>% pull(rank2) %>% as.numeric(), 
                                        labels = filter(ageGenderF_, genAge == "Women, 36+") %>% pull(word) ) ) +
    theme_bw() +
    # Remove the legend
    theme(legend.position = "none",
          # Remove the panel border
          panel.border     = element_blank(),
          # Remove just about everything from the y axis
          axis.title.y     = element_blank(),
          panel.grid.major.y = element_blank(),
          panel.grid.minor.y = element_blank(),
          # Remove a few things from the x axis and increase font size
          axis.title.x     = element_blank(),
          panel.grid.major.x = element_blank(),
          axis.text.x.top      = element_text(size=10),
          # Remove x & y tick marks
          axis.ticks       = element_blank(),
          axis.ticks.length = unit(0, "cm"),
          # Format title & subtitle
          plot.title       = element_text(size=10, face = "bold", hjust = 0.5),
          plot.subtitle    = element_text(hjust = 0.5) )

从一个简单的 r markdown 文档来看,这看起来与您的示例相似(尽管不准确): 在此处输入图像描述

rank您可以对数字执行完全相同的操作,scale_y_reverse()用于反转 y 轴。

ageGenderF_ = ageGenderF_ %>%
    ungroup() %>%
    mutate(word = factor(word_, ordered = TRUE, levels = ageGenderFLowRank$word_))

ageGenderF_ %>%
    # https://ibecav.github.io/slopegraph/
    ggplot(., aes(x = genAge, y = rank, group = word_)) +
    geom_line(aes(color = word_, alpha = 1), size = 1.5) +
    geom_label(aes(label = rank), 
               size = 2.5, 
               label.padding = unit(0.15, "lines"), 
               label.size = 0.0) +
    scale_x_discrete(position = "top", expand = c(0, .05) ) +
    scale_y_reverse(breaks = filter(ageGenderF_, genAge == "Women, 15-19") %>% pull(rank), 
                    labels = filter(ageGenderF_, genAge == "Women, 15-19") %>% pull(word),
                    sec.axis = dup_axis(~., 
                                        breaks = filter(ageGenderF_, genAge == "Women, 36+") %>% pull(rank), 
                                        labels = filter(ageGenderF_, genAge == "Women, 36+") %>% pull(word) ) ) +
    theme_bw() +
    # Remove the legend
    theme(legend.position = "none",
          # Remove the panel border
          panel.border     = element_blank(),
          # Remove just about everything from the y axis
          axis.title.y     = element_blank(),
          panel.grid.major.y = element_blank(),
          panel.grid.minor.y = element_blank(),
          # Remove a few things from the x axis and increase font size
          axis.title.x     = element_blank(),
          panel.grid.major.x = element_blank(),
          axis.text.x.top      = element_text(size=10),
          # Remove x & y tick marks
          axis.ticks       = element_blank(),
          axis.ticks.length = unit(0, "cm"),
          # Format title & subtitle
          plot.title       = element_text(size=10, face = "bold", hjust = 0.5),
          plot.subtitle    = element_text(hjust = 0.5) )
于 2019-03-27T20:48:46.133 回答
0

一种选择是将绘图保存为对象 ( p),然后使用包中的set_panel_size参数egg显式设置面板的高度和宽度(如本答案中所做的那样)。像这样的东西让你接近:

library(egg)
library(grid)

p2 <- set_panel_size(p, width=unit(7,"in"), height=unit(10, "in"))

grid.draw(p2)
于 2019-03-27T19:47:54.880 回答