5

我想做一个混合一维高斯的直方图作为图片。

在此处输入图像描述

谢谢孟的照片。

我的直方图是这样的:

在此处输入图像描述

我有一列中有很多数据(4,000,000 个数字)的文件:

1.727182
1.645300
1.619943
1.709263
1.614427
1.522313

而且我使用的脚本比孟和正义勋爵所做的修改要多:

from matplotlib import rc
from sklearn import mixture
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import matplotlib.ticker as tkr
import scipy.stats as stats

x = open("prueba.dat").read().splitlines()

f = np.ravel(x).astype(np.float)
f=f.reshape(-1,1)
g = mixture.GaussianMixture(n_components=3,covariance_type='full')
g.fit(f)
weights = g.weights_
means = g.means_
covars = g.covariances_

plt.hist(f, bins=100, histtype='bar', density=True, ec='red', alpha=0.5)
plt.plot(f,weights[0]*stats.norm.pdf(f,means[0],np.sqrt(covars[0])), c='red')
plt.rcParams['agg.path.chunksize'] = 10000

plt.grid()
plt.show()

当我运行脚本时,我有以下情节:

在此处输入图像描述

所以,我不知道如何放置所有必须存在的高斯的开始和结束。我是 python 新手,我对使用模块的方式感到困惑。拜托,你能帮助我并指导我如何做这个情节吗?

非常感谢

4

2 回答 2

3

一切都是为了重塑。首先,您需要重塑 f。对于 pdf,在使用 stats.norm.pdf 之前重塑。同样,在绘图之前进行排序和重塑。

from matplotlib import rc
from sklearn import mixture
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import matplotlib.ticker as tkr
import scipy.stats as stats

# x = open("prueba.dat").read().splitlines()

# create the data
x = np.concatenate((np.random.normal(5, 5, 1000),np.random.normal(10, 2, 1000)))

f = np.ravel(x).astype(np.float)
f=f.reshape(-1,1)
g = mixture.GaussianMixture(n_components=3,covariance_type='full')
g.fit(f)
weights = g.weights_
means = g.means_
covars = g.covariances_

plt.hist(f, bins=100, histtype='bar', density=True, ec='red', alpha=0.5)

f_axis = f.copy().ravel()
f_axis.sort()
plt.plot(f_axis,weights[0]*stats.norm.pdf(f_axis,means[0],np.sqrt(covars[0])).ravel(), c='red')

plt.rcParams['agg.path.chunksize'] = 10000

plt.grid()
plt.show()

在此处输入图像描述

于 2019-03-15T17:24:50.060 回答
1

虽然这是一个相当古老的线程,但我想提供我的看法。我相信我的回答对某些人来说更容易理解。此外,我还包括一个测试,以通过 BIC 标准检查所需的组件数量是否具有统计意义。

# import libraries (some are for cosmetics)
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator)
import astropy
from scipy.stats import norm
from sklearn.mixture import GaussianMixture as GMM
import matplotlib as mpl
mpl.rcParams['axes.linewidth'] = 1.5
mpl.rcParams.update({'font.size': 15, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})


# create the data as in @Meng's answer
x = np.concatenate((np.random.normal(5, 5, 1000), np.random.normal(10, 2, 1000)))
x = x.reshape(-1, 1)

# first of all, let's confirm the optimal number of components
bics = []
min_bic = 0
counter=1
for i in range (10): # test the AIC/BIC metric between 1 and 10 components
  gmm = GMM(n_components = counter, max_iter=1000, random_state=0, covariance_type = 'full')
  labels = gmm.fit(x).predict(x)
  bic = gmm.bic(x)
  bics.append(bic)
  if bic < min_bic or min_bic == 0:
    min_bic = bic
    opt_bic = counter
  counter = counter + 1


# plot the evolution of BIC/AIC with the number of components
fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1,2,1)
# Plot 1
plt.plot(np.arange(1,11), bics, 'o-', lw=3, c='black', label='BIC')
plt.legend(frameon=False, fontsize=15)
plt.xlabel('Number of components', fontsize=20)
plt.ylabel('Information criterion', fontsize=20)
plt.xticks(np.arange(0,11, 2))
plt.title('Opt. components = '+str(opt_bic), fontsize=20)


# Since the optimal value is n=2 according to both BIC and AIC, let's write down:
n_optimal = opt_bic

# create GMM model object
gmm = GMM(n_components = n_optimal, max_iter=1000, random_state=10, covariance_type = 'full')

# find useful parameters
mean = gmm.fit(x).means_  
covs  = gmm.fit(x).covariances_
weights = gmm.fit(x).weights_

# create necessary things to plot
x_axis = np.arange(-20, 30, 0.1)
y_axis0 = norm.pdf(x_axis, float(mean[0][0]), np.sqrt(float(covs[0][0][0])))*weights[0] # 1st gaussian
y_axis1 = norm.pdf(x_axis, float(mean[1][0]), np.sqrt(float(covs[1][0][0])))*weights[1] # 2nd gaussian

ax = fig.add_subplot(1,2,2)
# Plot 2
plt.hist(x, density=True, color='black', bins=np.arange(-100, 100, 1))
plt.plot(x_axis, y_axis0, lw=3, c='C0')
plt.plot(x_axis, y_axis1, lw=3, c='C1')
plt.plot(x_axis, y_axis0+y_axis1, lw=3, c='C2', ls='dashed')
plt.xlim(-10, 20)
#plt.ylim(0.0, 2.0)
plt.xlabel(r"X", fontsize=20)
plt.ylabel(r"Density", fontsize=20)

plt.subplots_adjust(wspace=0.3)
plt.show()
plt.close('all')

在此处输入图像描述

于 2021-10-20T02:23:32.597 回答