当主机有多个内核时,我无法在 docker 中的模型上运行推理。该模型通过 PyTorch 1.0 ONNX 导出器导出:
torch.onnx.export(pytorch_net, dummyseq, ONNX_MODEL_PATH)
使用单核启动模型服务器(包装在 Flask 中)会产生可接受的性能(cpuset 将进程固定到特定的 cpu)docker run --rm -p 8081:8080 --cpus 0.5 --cpuset-cpus 0 my_container
来自的回应ab -c 1 -n 1000 http://0.0.0.0:8081/predict\?itemids\=5,100
Percentage of the requests served within a certain time (ms)
50% 5
66% 5
75% 5
80% 5
90% 7
95% 46
98% 48
99% 49
但是将它固定到四个核心会为同一个 ab-call 提供完全不同的统计数据docker run --rm -p 8081:8080 --cpus 0.5 --cpuset-cpus 0,1,2,3 my_container
Percentage of the requests served within a certain time (ms)
50% 9
66% 12
75% 14
80% 18
90% 62
95% 66
98% 69
99% 69
100% 77 (longest request)
模型推理是这样完成的,除了这个问题,它似乎按预期工作。(当然,这在与模型导出完全不同的环境中运行)
from caffe2.python import workspace
from caffe2.python.onnx.backend import Caffe2Backend as c2
from onnx import ModelProto
class Model:
def __init__(self):
self.predictor = create_caffe2_predictor(path)
@staticmethod
def create_caffe2_predictor(onnx_file_path):
with open(onnx_file_path, 'rb') as onnx_model:
onnx_model_proto = ModelProto()
onnx_model_proto.ParseFromString(onnx_model.read())
init_net, predict_net = c2.onnx_graph_to_caffe2_net(onnx_model_proto)
predictor = workspace.Predictor(init_net, predict_net)
return predictor
def predict(self, numpy_array):
return self.predictor.run({'0': numpy_array})
** wrapper flask app which calls Model.predict() on calls to /predict **
OMP_NUM_THREADS=1
在容器环境中也存在,这有一些影响,但这不是最终问题。
您在此处看到的基准统计数据是在具有 8 个超线程的本地计算机上运行的,因此我不应该使我的计算机饱和并影响测试。这些结果也出现在我的 kubernetes 环境中,并且在那里我得到了大量的 CFS(完全公平调度程序)限制。
我在 kubernetes 环境中运行,所以我无法控制主机暴露多少 CPU,并且在那里进行某种固定似乎也有点 hacky。
有没有办法将 caffe2 模型推断固定到单个处理器?我在这里做明显错误的事情吗?caffe2.Predictor 对象是否不适合此任务?
任何帮助表示赞赏。
编辑:
我在这里添加了我能想到的最简单的可重现示例,其中包括 docker-container 和 run-script:https ://github.com/NegatioN/Caffe2Struggles