这是一个主要由@ptrblck
Pytorch 论坛提供的片段,用于对某些图像进行数据增强。
任务是分割,所以我假设图像及其对应的掩码需要增加。
我想知道如何在转换后显示一些图像和对应的蒙版以了解它们的外观?
这是脚本:
import torch
from torch.utils.data.dataset import Dataset # For custom data-sets
import torchvision.transforms as transforms
import torchvision.transforms.functional as tf
from PIL import Image
import numpy
import glob
import matplotlib.pyplot as plt
from split_dataset import test_loader
import os
class CustomDataset(Dataset):
def __init__(self, image_paths, target_paths, transform_images, transform_masks):
self.image_paths = image_paths
self.target_paths = target_paths
self.transform_images = transform_images
self.transform_masks = transform_masks
self.transformm = transforms.Compose([transforms.Lambda(lambda x: tf.rotate(x, 10)),
transforms.Lambda(lambda x: tf.affine(x, angle=0,
translate=(0, 0),
scale=0.2,
shear=0.2))
])
self.transform = transforms.ToTensor()
self.mapping = {
0: 0,
255: 1
}
def mask_to_class(self, mask):
for k in self.mapping:
mask[mask==k] = self.mapping[k]
return mask
def __getitem__(self, index):
image = Image.open(self.image_paths[index])
mask = Image.open(self.target_paths[index])
if any([img in self.image_paths[index] for img in self.transform_images]):
print('applying special transformation')
image = self.transformm(image) #augmentation
if any([msk in self.target_paths[index] for msk in self.transform_masks]):
print('applying special transformation')
image = self.transformm(mask) #augmentation
t_image = image.convert('L')
t_image = self.transform(t_image) # transform to tensor for image
mask = self.transform(mask) # transform to tensor for mask
mask = torch.from_numpy(numpy.array(mask, dtype=numpy.uint8))
mask = self.mask_to_class(mask)
mask = mask.long()
return t_image, mask, self.image_paths[index], self.target_paths[index]
def __len__(self): # return count of sample we have
return len(self.image_paths)
image_paths = glob.glob("D:\\Neda\\Pytorch\\U-net\\my_data\\imagesResized\\*.png")
target_paths = glob.glob("D:\\Neda\\Pytorch\\U-net\\my_data\\labelsResized\\*.png")
transform_images = ['image_981.png', 'image_982.png','image_983.png', 'image_984.png', 'image_985.png',
'image_986.png','image_987.png','image_988.png','image_989.png','image_990.png',
'image_991.png'] # apply special transformation only on these images
print(transform_images)
#['image_991.png', 'image_991.png']
transform_masks = ['image_labeled_981.png', 'image_labeled_982.png','image_labeled_983.png', 'image_labeled_984.png',
'image_labeled_985.png', 'image_labeled_986.png','image_labeled_987.png','image_labeled_988.png',
'image_labeled_989.png','image_labeled_990.png',
'image_labeled_991.png']
dataset = CustomDataset(image_paths, target_paths, transform_images, transform_masks)
for transform_images in dataset:
#print(transform_images)
transform_images = Image.open(os.path.join(image_paths, transform_images))
transform_images = numpy.array(transform_images)
transform_masks = Image.open(os.path.join(target_paths, transform_masks))
transform_masks = numpy.array(transform_masks)
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True, figsize = (6,6))
img1 = ax1.imshow(transform_images, cmap='gray')
ax1.axis('off')
img2 = ax2.imshow(transform_masks)
ax1.axis('off')
plt.show()
目前它正在导致错误
path = os.fspath(path)
TypeError: expected str, bytes or os.PathLike object, not tuple