我在这里发布了一个问题,询问如何解决这个问题:
使用 scipy.optimize.minimize 对“火箭”进行轨迹优化
理想情况下,我只想最小化最终时间,但我无法让优化器将时间附加到可以正确调整的变量上,所以我决定暂时尝试最小化 u^2。
这是代码:
# Code
t_f = 1.0
t = np.linspace(0., t_f, num = 10) # Time array for 1 second into the future with 0.01 increment
u = np.zeros(t.size) + 650
print(u)
g = -650
initial_position = 0
initial_velocity = 0
final_position = 100
final_velocity = 100
def car_dynamics(x):
# Create time vector
# t = np.linspace(0., t_f, num = 100) # Time array for 1 second into the future with 0.01 increment
# Integrate over entire time to find v as a function of t
a = x + g
v = int.cumtrapz(a, t, initial = 0) + initial_velocity
# Integrate v(t) to get s(t)
s = int.cumtrapz(v, t, initial = 0) + initial_position
return s, v
def constraint1(x): # Final state constraints (Boundary conditions)
s, v = car_dynamics(x)
print('c1', s[0] - initial_position)
return s[0] - initial_position
def constraint2(x): # Initial state constraints (initial conditions)
s, v = car_dynamics(x)
print('c2', v[0] - initial_velocity)
return v[0] - initial_velocity
def constraint3(x):
s, v = car_dynamics(x)
print('c3', s[-1] - final_position)
return s[-1] - final_position
def constraint4(x):
s, v = car_dynamics(x)
print('c4', v[-1] - final_velocity)
return v[-1] - final_velocity
def constraint5(x):
return x - 1000
def objective(x):
u2 = np.square(x)
return np.sum(u2)
cons = [{'type':'eq', 'fun':constraint1},
{'type':'eq', 'fun':constraint2},
{'type':'eq', 'fun':constraint3},
{'type':'eq', 'fun':constraint4}]
# {'type':'ineq', 'fun':constraint5}]
result = minimize(objective, u, constraints = cons, method = 'SLSQP', options={'eps':500, 'maxiter':1000, 'ftol':0.001, 'disp':True})
print(result)
代码运行但优化器失败。这是输出中的错误。
c1 0.0
c2 0.0
c3 -100.0
c4 -100.0
c1 0.0
c2 0.0
c3 -100.0
c4 -100.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c1 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c2 0.0
c3 -100.0
c3 -73.76543209876543
c3 -50.617283950617285
c3 -56.79012345679013
c3 -62.96296296296296
c3 -69.1358024691358
c3 -75.30864197530863
c3 -81.4814814814815
c3 -87.65432098765432
c3 -93.82716049382715
c3 -98.45679012345678
c4 -100.0
c4 -72.22222222222223
c4 -44.44444444444445
c4 -44.44444444444445
c4 -44.44444444444445
c4 -44.444444444444436
c4 -44.44444444444445
c4 -44.44444444444448
c4 -44.44444444444445
c4 -44.44444444444442
c4 -72.22222222222221
Singular matrix C in LSQ subproblem (Exit mode 6)
Current function value: 4225000.0
Iterations: 1
Function evaluations: 12
Gradient evaluations: 1
fun: 4225000.0
jac: array([1800., 1800., 1800., 1800., 1800., 1800., 1800., 1800., 1800.,
1800.])
message: 'Singular matrix C in LSQ subproblem'
nfev: 12
nit: 1
njev: 1
status: 6
success: False
x: array([650., 650., 650., 650., 650., 650., 650., 650., 650., 650.])
似乎在一定数量的迭代中没有满足约束。我应该切换目标函数以包含最终速度和最终位置吗?我尝试了不同的步长,但没有使用相同的退出代码。
有没有更好的方法可以将此功能用于我想要得到的东西?我试图在从 t0 到 t_f 的整个间隔内获取控制向量 u(t),这样我就可以将这些命令发送到火箭以进行最佳控制。现在我已经将优化简化为单轴,只是为了学习如何使用该函数。但正如你所见,我没有成功。
类似的示例将非常有帮助,我对其他优化方法持开放态度,只要它们是数字的,并且相对较快,因为我计划最终将其作为模型预测控制器实时实现。