我有一个函数来计算我正在装饰的log gamma 函数numba.njit
。
import numpy as np
from numpy import log
from scipy.special import gammaln
from numba import njit
coefs = np.array([
57.1562356658629235, -59.5979603554754912,
14.1360979747417471, -0.491913816097620199,
.339946499848118887e-4, .465236289270485756e-4,
-.983744753048795646e-4, .158088703224912494e-3,
-.210264441724104883e-3, .217439618115212643e-3,
-.164318106536763890e-3, .844182239838527433e-4,
-.261908384015814087e-4, .368991826595316234e-5
])
@njit(fastmath=True)
def gammaln_nr(z):
"""Numerical Recipes 6.1"""
y = z
tmp = z + 5.24218750000000000
tmp = (z + 0.5) * log(tmp) - tmp
ser = np.ones_like(y) * 0.999999999999997092
n = coefs.shape[0]
for j in range(n):
y = y + 1
ser = ser + coefs[j] / y
out = tmp + log(2.5066282746310005 * ser / z)
return out
例如,当我gammaln_nr
用于大型数组时np.linspace(0.001, 100, 10**7)
,我的运行时间大约比 scipy 慢 7 倍(参见下面附录中的代码)。但是,如果我为任何单个值运行,我的 numba 函数总是快 2 倍左右。这是怎么回事?
z = 11.67
%timeit gammaln_nr(z)
%timeit gammaln(z)
>>> 470 ns ± 29.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
>>> 1.22 µs ± 28.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
我的直觉是,如果我的函数对于一个值更快,那么对于一组值应该更快。当然,情况可能并非如此,因为我不知道 numba 是使用 SIMD 指令还是其他类型的矢量化,而 scipy 可能是。
附录
import matplotlib.pyplot as plt
import seaborn as sns
n_trials = 8
scipy_times = np.zeros(n_trials)
fastats_times = np.zeros(n_trials)
for i in range(n_trials):
zs = np.linspace(0.001, 100, 10**i) # evaluate gammaln over this range
# dont take first timing - this is just compilation
start = time.time()
gammaln_nr(zs)
end = time.time()
start = time.time()
gammaln_nr(zs)
end = time.time()
fastats_times[i] = end - start
start = time.time()
gammaln(zs)
end = time.time()
scipy_times[i] = end - start
fig, ax = plt.subplots(figsize=(12,8))
sns.lineplot(np.logspace(0, n_trials-1, n_trials), fastats_times, label="numba");
sns.lineplot(np.logspace(0, n_trials-1, n_trials), scipy_times, label="scipy");
ax.set(xscale="log");
ax.set_xlabel("Array Size", fontsize=15);
ax.set_ylabel("Execution Time (s)", fontsize=15);
ax.set_title("Execution Time of Log Gamma");