多次运行 MultinomialNB 后,我获得了 +ve 和 -ve 类 BoW、TfIdf 的相同功能。我什至在二元组和三元组上尝试过,这两个类的功能仍然相同。
best_alpha = 6
clf = MultinomialNB( alpha=best_alpha )
clf.fit(X_tr, y_train)
y_train_pred = batch_predict(clf, X_tr)
y_test_pred = batch_predict(clf, X_te)
train_fpr, train_tpr, tr_thresholds = roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = roc_curve(y_test, y_test_pred)
这是获取文本数据 Tf-Idf 的正面和负面类别的前 10 个特征的代码。
feats_tfidf
包含分类、数字和文本数据的特征。
对于正类
sorted_idx = np.argsort( clf.feature_log_prob_[1] )[-10:]
for p,q in zip(feats_tfidf[ sorted_idx ], clf.feature_log_prob_[1][ sorted_idx ]):
print('{:45}:{}'.format(p,q))
输出:
Mathematics :-7.134937347073638
Literacy :-6.910334729871051
Grades_3_5 :-6.832969821702653
Ms :-6.791634814736902
Math_Science :-6.748584860699069
Grades_PreK_2 :-6.664767807632341
Literacy_Language :-6.4833650280402875
Mrs :-6.404885953106168
Teacher number of previously posted projects :-3.285663623429455
price :-0.09775430166978438
对于负类
sorted_idx = np.argsort( clf.feature_log_prob_[0] )[-10:]
for p,q in zip(feats_tfidf[ sorted_idx ], clf.feature_log_prob_[0][ sorted_idx ]):
print('{:45}:{}'.format(p,q))
输出:
Literacy :-7.31906682336635
Mathematics :-7.318545582802034
Grades_3_5 :-7.088236519755028
Ms :-6.970453484098645
Math_Science :-6.887189615718408
Grades_PreK_2 :-6.85882128589294
Literacy_Language :-6.8194613665941155
Mrs :-6.648860662073821
Teacher number of previously posted projects :-4.008908256269724
price :-0.08131982830664697
请帮助我,这是正确的做法。