是否可以锁定全局环境并仍然允许.Random.seed
设置或删除?的默认行为lockEnvironment()
对于我的用例来说过于激进。
lockEnvironment(globalenv())
rnorm(10)
#> Error in rnorm(10) : cannot add bindings to a locked environment
rm(.Random.seed)
#> Error in rm(.Random.seed) :
#> cannot remove bindings from a locked environment
背景
drake
7.0.0 版将有一个新的保障措施来保护再现性。
plan <- drake_plan(
x = {
data(mtcars)
mtcars$mpg
},
y = mean(x)
)
plan
#> # A tibble: 2 x 2
#> target command
#> <chr> <expr>
#> 1 x { data(mtcars) mtcars$mpg }
#> 2 y mean(x)
make(plan)
#> target x
#> fail x
#> Error: Target `x` failed. Call `diagnose(x)` for details. Error message:
#> cannot add bindings to a locked environment.
#> One of your targets tried to modify your environment,
#> which could invalidate other targets
#> and undermine reproducibility (example:
#> https://github.com/ropensci/drake/issues/664#issuecomment-453163562).
#> Beware <<-, ->>, attach(), data(), and side effects in general.
#> Use make(lock_envir = FALSE) to avoid this error (not recommended).
错误来自对 的调用data(mtcars)
。构建的行为x
本身就会改变x
's 的依赖关系。没有护栏,工作流程就会自行失效。
make(plan, lock_envir = FALSE)
#> target x
#> target y
make(plan, lock_envir = FALSE)
#> target x
但是有了护栏,我们会遇到像https://github.com/ropensci/drake/issues/749和https://github.com/ropensci/drake/issues/675#issuecomment-458222414这样的边缘案例。