2

我正在通过以下代码创建数据集:

from lightfm.data import Dataset
from lightfm import LightFM

dataset = Dataset()


dataset.fit((row['id'] for row in user_queryset.values()),
            (row['id'] for row in item_queryset.values()))


num_users, num_items = dataset.interactions_shape()


(interactions_sparse_matrix, weights) = dataset.build_interactions(
        (
            (
                row['user_id']
                ,row['item_id']
                ,row['weight']
            )
        )
        for row in queryset.values()
    )

dataset.fit_partial(
    items=(x['item_id'] for x in items_list),
    item_features=(x['feature_id'] for x in item_features_list)
    )
dataset.fit_partial(
    users=(x['user_id'] for x in users_list),
    user_features=(x['feature_id'] for x in user_features_list)
    )
item_features = dataset.build_item_features(
    ((x['item_id'], [x['property_id']])
    for x in item_features_list))
user_features = dataset.build_user_features(
    ((x['user_id'], [x['property_id']])
    for x in user_features_list))

我通过以下方式生成火车模型:

model = LightFM(loss='bpr')
model.fit(
        interactions_sparse_matrix
        ,item_features=item_features
        ,user_features=user_features
        )

然后我使用cosine_similarity方法sklearn来获得相似之处:

from scipy import sparse
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

users_sparse_matrix = sparse.csr_matrix(users_embed)
similarities = cosine_similarity(users_sparse)

但是当打印similarities.shape它的回报时:

(14, 14)

虽然我有 5 个用户并且我认为它必须是 (5,5) ,但我错了吗?像这样的矩阵:

1    0.2   0.8    0.4    0.6
0.2   1    ...    ...    ...
0.8  ...    1     ...    ...
0.4  ...   ...     1     ...
0.6  ...   ...    ...     1

如何让用户及其分数推荐给用户?谢谢

我的 LightFM 版本是:1.15

我使用python 3.6

4

1 回答 1

3

问题不在于您的代码。对 user_embedding 的概念存在误解。user_embedding 矩阵是以用户特征数为行,组件数为列的矩阵。当你有这个矩阵时,为了用余弦相似度获得每个用户之间的相似度,你需要将 user_feature 矩阵与 user_embedding 相乘,最后计算 user_feature 矩阵与 user_embedding 矩阵的点积的余弦相似度。

于 2019-02-18T17:33:11.467 回答