0

我有以下玩具df:

FilterSystemO2Concentration (Percentage)    ProcessChamberHumidityAbsolute (g/m3)   ProcessChamberPressure (mbar)   
0                     0.156            1                                 29.5                                28.4                                                            29.6                                28.4   
2                     0.149          1.3                               29.567                                28.9   
3                     0.149            1                               29.567                                28.9   
4                     0.148          1.6                                 29.6                                29.4   

这只是一个示例。原来有超过 1200 行。对其进行过采样以保留其统计特性的最佳方法是什么?

我用谷歌搜索了一段时间,我只遇到了不平衡类的重采样算法。但这不是我想要的,无论如何我对平衡数据不感兴趣,我只是想以或多或少保留原始数据分布和统计属性的方式产生更多样本。

提前致谢

4

1 回答 1

2

使用scipy.stats.rv_histogram(np.histogram(data)).isf(np.random.random(size=n))将创建从数据分布(直方图)中随机选择的 n 个新样本。您可以对每一列执行此操作:

例子:

import pandas as pd
import scipy.stats as stats

df = pd.DataFrame({'x': np.random.random(100)*3, 'y': np.random.random(100) * 4 -2})
n = 5
new_values = pd.DataFrame({s: stats.rv_histogram(np.histogram(df[s])).isf(np.random.random(size=n)) for s in df.columns})
df = df.assign(data_type='original').append(new_values.assign(data_type='oversampled'))
df.tail(7)
>>          x         y    data_type
98  1.176073 -0.207858     original
99  0.734781 -0.223110     original
0   2.014739 -0.369475  oversampled
1   2.825933 -1.122614  oversampled
2   0.155204  1.421869  oversampled
3   1.072144 -1.834163  oversampled
4   1.251650  1.353681  oversampled
于 2019-02-13T15:24:32.380 回答